2023学年新疆生产建设兵团第十四师皮山农场中学九年级下学期第一次模拟数学模拟试题(无答案)
展开(分值:150分考试时间:120分钟)
考生须知:
1.本试卷分为试题卷和答题卡两部分。
2.试题卷共4页,答题卡共2页,所有答案必须写在答题卡上,写在试题卷上无效。
3.答题前,考生必须在答题卡规定位置认真填写姓名、准考证号、座位号,并按照考试要求粘贴条形码。
一、单项选择题(本大题共9小题,每小题5分,共45分)
1在0,2,,这四个数中,最小的数是( )
A.0B.2C.D.
2.下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是( )
A.赵爽弦图B.笛卡尔心形线
C.科克曲线D.斐波那契螺旋线
3.下列计算正确的是( )
A.B.C.D.
4.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为( )
A.5分B.4分C.3分D.45%
5.实数a,b在数轴上对应点的位置如图所示,下列结论中正确的是( )
A.B.C.D.
6.在下列条件中,能够判定为矩形的是( )
A.B.C.D.
7.定义运算:.例如:.则方程的根的情况为( )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.只有一个实数根
8.地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是( )
A海拔越高,大气压越大
B.图中曲线是反比例函数的图象
C.海拔为4千米时,大气压约为70千帕
D.图中曲线表达了大气压和海拔两个量之间的变化关系
9.若二次函数的图象过不同的五点,,,,,则,,的大小关系是( )
A.B.C.D.
二、填空题(本大题共6小题,每小题5分,共30分)
10.已知是等腰三角形.若,则的顶角度数是______.
11.解不等式组:的解集是______.
12.关于x的分式方程的解为______.
13.“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交于点P.若,则______.
第1次折叠第2次折叠
14.如图,在的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是______.
15.如图,的内切圆(圆心为点O)与各边分别相切于点D,E,F,连接EF,DE,DF.以点B为圆心,以适当长为半径作弧分别交AB,BC于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线BP.下列说法正确的是______.(填代码即可)
A.射线BP一定过点O
B.点O是三条中线的交点
C.若是等边三角形,则
D.点O是三条边的垂直平分线的交点
三、解答题(本大题共8小题,共75分)
16.(6分)计算
17.(8分)先化简,再求值:,其中.
18.(10分)为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间(单位:分钟).按照完成时间分成五组:A组“”,B组“”,C组“”,D组“”,E组“”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:
(1)这次调查的样本容量是______,请补全条形统计图;
(2)在扇形统计图中,B组的圆心角是______度,本次调查数据的中位数落在______组内;
(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.
19.(10分)如图,在中,AC,BD交于点O,点E,F在AC上,.
(1)求证:四边形EBFD是平行四边形;
(2)若,求证:四边形EBFD是菱形.
20.(9分)如图,B港口在A港口的南偏西25°方向上,距离A港口100海里处.一艘货轮航行到C处,发现A港口在货轮的北偏西25°方向,B港口在货轮的北偏西70°方向,求此时货轮与A港口的距离(结果取整数).(参考数据:,,,)
21.(10分)如图,点A在反比例函数的图象上,轴,垂足为,过作轴,交过点B的一次函数的图象于D点,交反比例函数的图象于E点,.
(1)求反比例函数和一次函数的表达式;
(2)求DE的长.
22.(10分)如图,是的外接圆,AD是的直径,BC与过点A的切线EF平行,BC,AD相交于点G.
(1)求证:;
(2)若,求AB的长.
23.(12分)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:
下图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,.在空中飞行过程中,运动员到x轴的距离与水平方向移动的距离具备二次函数关系,其解析式为.
(1)求b,c的值;
(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离与飞行时间具备一次函数关系,当运动员在起跳点腾空时,,;空中飞行5s后着陆.
①求x关于t的函数解析式;
②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少?
每天完成书面作业时间条形统计图
每天完成书面作业时间扇形统计图
2023-2024学年新疆生产建设兵团第二师二十五团中学九上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年新疆生产建设兵团第二师二十五团中学九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了在平面直角坐标系中,已知点A,反比例函数y=的图象位于等内容,欢迎下载使用。
2023-2024学年新疆生产建设兵团第二师二十五团中学数学八上期末调研试题含答案: 这是一份2023-2024学年新疆生产建设兵团第二师二十五团中学数学八上期末调研试题含答案,共6页。试卷主要包含了下列计算错误的是等内容,欢迎下载使用。
新疆生产建设兵团第二师二十五团中学2022-2023学年七下数学期末监测模拟试题含答案: 这是一份新疆生产建设兵团第二师二十五团中学2022-2023学年七下数学期末监测模拟试题含答案,共7页。试卷主要包含了下列分式中,最简分式是,已知反比例函数的图象过点P等内容,欢迎下载使用。