搜索
    上传资料 赚现金
    英语朗读宝

    【中考特训】湖南省张家界市中考数学模拟考试 A卷(含答案及详解)

    【中考特训】湖南省张家界市中考数学模拟考试 A卷(含答案及详解)第1页
    【中考特训】湖南省张家界市中考数学模拟考试 A卷(含答案及详解)第2页
    【中考特训】湖南省张家界市中考数学模拟考试 A卷(含答案及详解)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【中考特训】湖南省张家界市中考数学模拟考试 A卷(含答案及详解)

    展开

    这是一份【中考特训】湖南省张家界市中考数学模拟考试 A卷(含答案及详解),共24页。试卷主要包含了如图,,抛物线的顶点为,下列计算中,正确的是,代数式的意义是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
    A.1B.2020C.2021D.2022
    2、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°
    A.B.C.D.
    3、如图,AD为的直径,,,则AC的长度为( )
    A.B.C.4D.
    4、如图,、是的切线,、是切点,点在上,且,则等于( )
    A.54°B.58°C.64°D.68°
    5、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.B.C.D.
    6、抛物线的顶点为( )
    A.B.C.D.
    7、下列计算中,正确的是( )
    A.a2+a3=a5B.a•a=2aC.a•3a2=3a3D.2a3﹣a=2a2
    8、代数式的意义是( )
    A.a与b的平方和除c的商B.a与b的平方和除以c的商
    C.a与b的和的平方除c的商D.a与b的和的平方除以c的商
    9、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是( )
    A.3个B.4个C.5个D.6个
    10、下列语句中,不正确的是( )
    A.0是单项式B.多项式的次数是4
    C.的系数是D.的系数和次数都是1
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知,则________.
    2、平面内,,C为内部一点,射线平分,射找平分,射线平分,当时,的度数是____________.
    3、如图,中,,,点D、E分别在边AB,AC上,已知,,则线段DE的长为______.
    4、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.
    5、如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为______.
    三、解答题(5小题,每小题10分,共计50分)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    1、如图,在数轴上点A表示数a,点B表示数b,点C表示数c,且a、c满足.若点A与点B之间的距离表示为,点B与点C之间的距离表示为,点B在点A、C之间,且满足.
    (1)___________, ___________,___________.
    (2)动点M从B点位置出发,沿数轴以每秒1个单位的速度向终点C运动,同时动点N从A点出发,沿数轴以每秒2个单位的速度向C点运动,设运动时间为t秒.问:当t为何值时,M、N两点之间的距离为3个单位?
    2、我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC中,AB=AC,的值为△ABC的正度.
    已知:在△ABC中,AB=AC,若D是△ABC边上的动点(D与A,B,C不重合).
    (1)若∠A=90°,则△ABC的正度为 ;
    (2)在图1,当点D在腰AB上(D与A、B不重合)时,请用尺规作出等腰△ACD,保留作图痕迹;若△ACD的正度是,求∠A的度数.
    (3)若∠A是钝角,如图2,△ABC的正度为,△ABC的周长为22,是否存在点D,使△ACD具有正度?若存在,求出△ACD的正度;若不存在,说明理由.
    3、已知:如图,在中,,,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足.求证:
    (1);
    (2)过点C作,交BE于点G,交AB于点M,求证:.
    4、计算:(x+2)(4x﹣1)+2x(2x﹣1).
    5、已知的负的平方根是,的立方根是3,求的四次方根.
    -参考答案-
    一、单选题
    1、D
    【分析】
    根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
    【详解】
    解:如图,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    由题意得:SA=1,
    由勾股定理得:SB+SC=1,
    则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
    同理可得:
    “生长”了2次后形成的图形中所有的正方形面积和为3,
    “生长”了3次后形成的图形中所有正方形的面积和为4,
    ……
    “生长”了2021次后形成的图形中所有的正方形的面积和是2022,
    故选:D
    【点睛】
    本题考查了勾股数规律问题,找到规律是解题的关键.
    2、C
    【分析】
    根据平行线的性质可得,进而根据即可求解
    【详解】
    解:
    故选C
    【点睛】
    本题考查了平行线的性质,掌握平行线的性质是解题的关键.
    3、A
    【分析】
    连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出.
    【详解】
    解:连接CD

    ∴AC=DC
    又∵AD为的直径
    ∴∠ACD=90°



    故答案为:A.
    【点睛】
    本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.
    4、C
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
    【详解】
    解:连接,,如下图:

    ∵PA、PB是的切线,A、B是切点

    ∴由四边形的内角和可得:
    故选C.
    【点睛】
    此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
    5、B
    【分析】
    根据三角形的中线的定义判断即可.
    【详解】
    解:∵AD、BE、CF是△ABC的三条中线,
    ∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
    故A、C、D都不一定正确;B正确.
    故选:B.
    【点睛】
    本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
    6、B
    【分析】
    根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
    【详解】
    解:∵y=2(x-1)2+3,
    ∴抛物线的顶点坐标为(1,3),
    故选:B.
    【点睛】
    本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
    7、C
    【分析】
    根据整式的加减及幂的运算法则即可依次判断.
    【详解】
    A. a2+a3不能计算,故错误;
    B. a•a=a2,故错误;
    C. a•3a2=3a3,正确;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    D. 2a3﹣a=2a2不能计算,故错误;
    故选C.
    【点睛】
    此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.
    8、D
    【分析】
    (a+b)2表示a与b的和的平方,然后再表示除以c的商.
    【详解】
    解:代数式的意义是a与b的和的平方除以c的商,
    故选:D.
    【点睛】
    此题主要考查了代数式的意义,关键是根据计算顺序描述.
    9、C
    【分析】
    根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.
    【详解】
    解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,
    所以上层至少1块,底层2行至少有3+1=4块,
    所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.
    故选:C
    【点睛】
    本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
    10、D
    【分析】
    分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
    【详解】
    解:A、0是单项式,正确,不符合题意;
    B、多项式的次数是4,正确,不符合题意;
    C、的系数是,正确,不符合题意;
    D、的系数是-1,次数是1,错误,符合题意,
    故选:D.
    【点睛】
    本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
    二、填空题
    1、3
    【解析】
    【分析】
    把变形后把代入计算即可.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:∵,
    ∴,
    故答案为:3.
    【点睛】
    此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.
    2、45°或15°
    【解析】
    【分析】
    根据角平分线的定义和角的运算,分射线OD在∠AOC外部和射线OD在∠AOC内部求解即可.
    【详解】
    解:∵射线平分,射找平分,
    ∴∠MOC= ∠AOC,∠NOC= ∠BOC,
    ∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB=60°,
    ∵射线平分,
    ∴∠MOD= ∠MON=30°,
    若射线OD在∠AOC外部时,如图1,
    则∠COD=∠MOD-∠MOC=30°-∠AOC,
    即2∠COD=60°-∠AOC,
    ∵,
    ∴,
    解得:∠AOC=45°或15°;
    若射线OD在∠AOC内部时,如图2,
    则∠COD=∠MOC-∠MOD=∠AOC-30°,
    ∴2∠COD=∠AOC-60°,即∠AOC-2∠COD=60°,不满足,
    综上,∠AOC=45°或15°,
    故答案为:45°或15°.

    【点睛】
    本题考查角平分线的定义、角的运算,熟练掌握角平分线的定义和角的有关计算,利用分类讨论思想求解是解答的关键.
    3、####
    【解析】
    【分析】
    先证明可得再代入数据进行计算即可.
    【详解】
    解: ,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ,,,


    故答案为:
    【点睛】
    本题考查的是相似三角形的判定与性质,掌握“两个角对应相等的两个三角形相似”是解本题的关键.
    4、4m+12##12+4m
    【解析】
    【分析】
    根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.
    【详解】
    解:由面积的和差,得
    长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).
    由长方形的宽为3,可得长方形的长是(2m+3),
    长方形的周长是2[(2m+3)+3]=4m+12.
    故答案为:4m+12.
    【点睛】
    本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.
    5、(-,1)
    【解析】
    【分析】
    首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.
    【详解】
    解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,
    则∠ODC=∠AEO=90°,
    ∴∠OCD+∠COD=90°,
    ∵四边形OABC是正方形,
    ∴OC=OA,∠AOC=90°,
    ∴∠COD+∠AOE=90°,
    ∴∠OCD=∠AOE,
    在△AOE和△OCD中,

    ∴△AOE≌△OCD(AAS),
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴CD=OE=1,OD=AE=,
    ∴点C的坐标为:(-,1).
    故答案为:(-,1).
    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解此题的关键.
    三、解答题
    1、
    (1)-2,2,10;
    (2)1或7
    【分析】
    (1)根据非负性,得到a+2=0,c-10=0,将线段长转化为绝对值即|b-c|=2||a-b,化简绝对值;
    (2)先用t分别表示M,N代表的数,根据MN=3,转化为绝对值问题求解.
    (1)
    ∵,
    ∴a= -2,c=10,
    ∵点B在点A、C之间,且满足,
    ∴10-b=2(b+2),
    解得b=2,
    故答案为:-2,2,10;
    (2)
    设运动时间为t秒,则点N表示的数为2t-2;点M表示的数为t+2,
    根据题意,得|t+2-(2t-2)|=3,
    ∴-t+4=3或-t+4= -3,
    解得t=1或t=7,
    故t为1或7时,M、N两点之间的距离为3个单位.
    【点睛】
    本题考查了实数的非负性,数轴上两点间的距离,绝对值的化简,熟练把线段长转化为绝对值表示是解题的关键.
    2、(1)(2)图见解析,∠A=45°(3)存在,正度为或.
    【分析】
    (1)当∠A=90°,△ABC是等腰直角三角形,故可求解;
    (2)根据△ACD的正度是,可得△ACD是以AC为底的等腰直角三角形,故可作图;
    (3)由△ABC的正度为,周长为22,求出△ABC的三条边的长,然后分两种情况作图讨论即可求解.
    【详解】
    (1)∵∠A=90°,则△ABC是等腰直角三角形
    ∴AB=AC
    ∵AB2+AC2=BC2
    ∴BC=
    ∴△ABC的正度为
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故答案为:;
    (2)∵△ACD的正度是,由(1)可得△ACD是以AC为底的等腰直角三角形
    故作CD⊥AB于D点,如图,△ACD即为所求;
    ∵△ACD是以AC为底的等腰直角三角形
    ∴∠A=45°;
    (3)存在
    ∵△ABC的正度为,
    ∴=,
    设:AB=3x,BC=5x,则AC=3x,
    ∵△ABC的周长为22,
    ∴AB+BC+AC=22,
    即:3x+5x+3x=22,
    ∴x=2,
    ∴AB=3x=6,BC=5x=10,AC=3x=6,
    分两种情况:
    ①当AC=CD=6时,如图
    过点A作AE⊥BC于点E,
    ∵AB=AC,
    ∴BE=CE=BC=5,
    ∵CD=6,
    ∴DE=CD−CE=1,
    在Rt△ACE中,
    由勾股定理得:AE=,
    在Rt△AED中,
    由勾股定理得:AD=
    ∴△ACD的正度=;
    ②当AD=CD时,如图
    由①可知:BE=5,AE=,
    ∵AD=CD,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴DE=CE−CD=5−AD,
    在Rt△ADE中,由勾股定理得:AD2−DE2=AE2,
    即:AD2−(5−AD)2=11,
    解得:AD=,
    ∴△ACD的正度=.
    综上所述存在两个点D,使△ABD具有正度.△ABD的正度为或.
    【点睛】
    此题考查了等腰三角形的性质,解题的关键是理解正度的含义、熟知勾股定理与等腰三角形的性质.
    3、
    (1)见解析
    (2)见解析
    【分析】
    (1)由可得可得,然后再说明,即可证明结论;
    (2)说明即可证明结论.
    (1)
    证明:∵

    ∵,
    ∴∠BDC=

    ∵,
    ∴∠A+∠ABC=90°,∠DCB+∠ABC=90°,
    ∴∠A=∠DCB
    ∵∠CBD=∠CBD

    ∴.
    (2)
    解:∵
    ∴∠A=∠CBE

    ∴∠DCB=∠CBE
    ∵∠AEB=∠CBE+∠BCE,∠CFM=∠CDA+∠FMD
    ∴∠AEB=∠CFM
    ∵CG⊥BE,CD⊥AB,∠CFD=∠DFB
    ∴∠MCF=∠FBD

    ∴.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题主要考查了相似三角形的判定与性质,灵活运用相似三角形的判定定理成为解答本题的关键.
    4、
    【分析】
    根据单项式乘以多项式,多项式乘以多项式的法则进行乘法运算,再合并同类项即可.
    【详解】
    解:
    【点睛】
    本题考查的是整式的乘法运算,掌握“单项式乘以多项式与多项式乘以多项式的法则”是解本题的关键.
    5、
    【分析】
    根据的负的平方根是,的立方根是3,可以求得、的值,从而可以求得所求式子的四次方根.
    【详解】
    解:的负的平方根是,的立方根是3,

    解得,,

    的四次方根是,
    即的四次方根是.
    【点睛】
    本题考查平方根、立方根,以及二元一次方程组的解法,解答本题的关键是明确题意,求出、的值.

    相关试卷

    【中考特训】湖南省张家界市中考数学真题模拟测评 (A)卷(含答案解析):

    这是一份【中考特训】湖南省张家界市中考数学真题模拟测评 (A)卷(含答案解析),共26页。试卷主要包含了下列图标中,轴对称图形的是等内容,欢迎下载使用。

    【中考特训】湖南省新化县中考数学模拟考试 A卷(含答案详解):

    这是一份【中考特训】湖南省新化县中考数学模拟考试 A卷(含答案详解),共33页。试卷主要包含了生活中常见的探照灯,一元二次方程的根为.,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。

    【中考特训】湖南省中考数学五年真题汇总 卷(Ⅲ)(含答案详解):

    这是一份【中考特训】湖南省中考数学五年真题汇总 卷(Ⅲ)(含答案详解),共37页。试卷主要包含了如图,在中,,,,则的度数为,下列函数中,随的增大而减小的是,如图个三角形.等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map