【中考特训】湖南省张家界市中考数学真题模拟测评 (A)卷(含答案解析)
展开
这是一份【中考特训】湖南省张家界市中考数学真题模拟测评 (A)卷(含答案解析),共26页。试卷主要包含了下列图标中,轴对称图形的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、有理数,在数轴上对应点如图所示,则下面式子中正确的是( )
A.B.C.D.
2、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
3、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
A.2个B.3个C.4个D.5个
4、下列图标中,轴对称图形的是( )
A.B.C.D.
5、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
A.B.C.D.
6、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
7、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
A.B.C.D.
8、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
9、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A.B.C.D.
10、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为( ).
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、定义:有一组对边相等而另一组对边不相等的凸四边形叫做“对等四边形”,如图,在中,,点A在边BP上,点D在边CP上,如果,,,四边形ABCD为“对等四边形”,那么CD的长为_____________.
2、已知抛物线与轴相交于,两点.若线段的长不小于2,则代数式的最小值为_______.
3、如图,在中,BC的垂直平分线MN交AB于点D,若,,P是直线MN上的任意一点,则的最小值是______.
4、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
5、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:),那么最大温差是________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,三角形中,点D在上,点E在上,点F,G在上,连接.己知,,求证:.
将证明过程补充完整,并在括号内填写推理依据.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
证明:∵_____________(已知)
∴(_______________________)
∴.________(____________________)
∵(已知)
∴________(等量代换)
∴(___________________)
2、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:
(1)本次调查共抽取了多少名学生?
(2)①请补全条形统计图;
②求出扇形统计图中表示“及格”的扇形的圆心角度数.
(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?
3、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).
(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;
(2)求甲、乙两人在途中相遇的时间.
4、小欣在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质.其研究过程如下:
(1)绘制函数图象.
①列表:下表是x与y的几组对应值,其中______;
②描点:根据表中的数值描点,请补充描出点;
③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
(2)探究函数性质.
判断下列说法是否正确(正确的填“√”,错误的填“×”).
①函数值y随x的增大而减小; ( )
②函数图象关于原点对称;( )
③函数图象与直线没有交点.( )
(3)请你根据图象再写一条此函数的性质:______.
5、如图,等腰直角△ABC中,∠BAC=90°,在BC上取一点D,使得CD=AB,作∠ABC的角平分线交AD于E,请先按要求继续完成图形:以A为直角顶点,在AE右侧以AE为腰作等腰直角△AEF,其中∠EAF=90°.再解决以下问题:
(1)求证:B,E,F三点共线;
(2)连接CE,请问△ACE的面积和△ABF的面积有怎样的数量关系,并说明理由.
-参考答案-
一、单选题
1、C
【分析】
先根据数轴可得,再根据有理数的加减法与乘法法则逐项判断即可得.
【详解】
解:由数轴得:.
A、,此项错误;
B、由得:,所以,此项错误;
C、,此项正确;
D、,此项错误;
故选:C.
【点睛】
本题考查了数轴、绝对值、有理数的加减法与乘法,熟练掌握数轴的性质是解题关键.
2、C
【分析】
根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.
【详解】
解:
A、不是中心对称图形,是轴对称图形,故此选项错误;
B、是中心对称图形,不是轴对称图形,故此选项错误;
C、是中心对称图形,也是轴对称图形,故此选项正确;
D、不是中心对称图形,是轴对称图形,故此选项错误;
故选:C.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、C
【分析】
设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
【详解】
解:设原两位数的个位为 十位为 则这个两位数为
交换其个位数与十位数的位置,所得新两位数为 则
整理得:
为正整数,且
或或或
所以这个两位数为:
故选C
【点睛】
本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
4、A
【详解】
解:A、是轴对称图形,故本选项符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项不符合题意;
D、不是轴对称图形,故本选项不符合题意;
故选:A
【点睛】
本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
5、C
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:12000
故选C
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
6、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
7、B
【分析】
根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
【详解】
解:∵ADBC,
∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
∴,故A正确,不符合题意;
∵ADBC,
∴△DOE∽△BOF,
∴,
∴,
∴,故B错误,符合题意;
∵ADBC,
∴△AOD∽△COB,
∴,
∴,故C正确,不符合题意;
∴ ,
∴,故D正确,不符合题意;
故选:B
【点睛】
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
8、A
【分析】
根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
【详解】
解:B是俯视图,C是左视图,D是主视图,
故四个平面图形中A不是这个几何体的三视图.
故选:A.
【点睛】
本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
9、B
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
10、C
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:∵袋子中共有6个小球,其中白球有3个,
∴摸出一个球是白球的概率是.
故选:C.
【点睛】
本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
二、填空题
1、13或12-或12+
【解析】
【分析】
根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.
【详解】
解:如图,点D的位置如图所示:
①若CD=AB,此时点D在D1的位置,CD1=AB=13;
②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,
过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,
设BE=x,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵,
∴AE=x,
在Rt△ABE中,AE2+BE2=AB2,
即x2+(x)2=132,
解得:x1=5,x2=-5(舍去),
∴BE=5,AE=12,
∴CE=BC-BE=6,
由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,
在Rt△AFD2中,FD2=,
∴CD2=CF-FD2=12-,
CD3=CF+FD2=12+,
综上所述,CD的长度为13、12-或12+.
故答案为:13、12-或12+.
【点睛】
本题主要考查了新定义,锐角三角函数,勾股定理等知识,解题的关键是理解并能运用“等对角四边形”这个概念.在(2)中注意分类讨论思想的应用、勾股定理的应用.
2、-1
【解析】
【分析】
将抛物线解析式配方,求出顶点坐标为(1,-2)在第四象限,再根据抛物线与x轴有两个交点可得,设为A,B两点的横坐标,然后根据已知,求出的取值范围,再设,配方代入求解即可.
【详解】
解:
=
=
∴抛物线顶点坐标为(1,-2),在第四象限,
又抛物线与轴相交于A,两点.
∴抛物线开口向上,即
设为A,B两点的横坐标,
∴
∵线段的长不小于2,
∴
∴
∴
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴
解得,
设
当时,有最小值,最小值为:
故答案为:-1
【点睛】
本题主要考查发二次函数的图象与性质,熟记完全平方公式和根与系数的关系是解题的关键.
3、8
【解析】
【分析】
如图,连接PB.利用线段的垂直平分线的性质,可知PC=PB,推出PA+PC=PA+PB≥AB,即可解决问题.
【详解】
解:如图,连接PB.
∵MN垂直平分线段BC,
∴PC=PB,
∴PA+PC=PA+PB,
∵PA+PB≥AB=BD+DA=5+3=8,
∴PA+PC≥8,
∴PA+PC的最小值为8.
故答案为:8.
【点睛】
本题考查轴对称﹣最短问题,线段的垂直平分线的性质等知识,解题的关键是学会利用两点之间线段最短解决最短问题,属于中考常考题型.
4、<
【解析】
【分析】
找到二次函数对称轴,根据二次函数的增减性即可得出结论.
【详解】
解:∵y=﹣2(x﹣1)2+3,
∴抛物线y=﹣2(x﹣1)2+3的开口向下,对称轴为x=1,
∴在x<1时,y随x的增大而增大,
∵x1<x2<0,
∴y1<y2.
故答案为:<.
【点睛】
本题考查二次函数的增减性,掌握其增减规律,找到对称轴是解本题关键.
5、15
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
通过表格即可求得最高和最低气温,12月3日的温差最大,最大温差为10-(-5)=15℃;
【详解】
解:12月1日的温差:
12月2日的温差:
12月3日的温差:
12月4日的温差:
12月5日的温差:
,
最大温差是15,
故答案为:15.
【点睛】
此题考查了正数与负数以及有理数的减法,熟练掌握运算法则是解本题的关键.
三、解答题
1、,同旁内角互补,两直线平行,,两直线平行,内错角相等,,同位角相等,两直线平行
【分析】
先由,证明,可得,结合已知条件证明,再证明即可.
【详解】
解:证明:∵(已知)
∴(同旁内角互补,两直线平行)
∴.(两直线平行,内错角相等)
∵(已知)
∴(等量代换)
∴(同位角相等,两直线平行)
【点睛】
本题考查的是平行线的判定与性质,掌握“平行线的判定方法”是解本题的关键.
2、
(1)100名
(2)①见解析;②
(3)1440名
【分析】
(1)用不及格的人数除以不及格的人数占比即可得到总人数;
(2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案;
(3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.
(1)
解:由题意得抽取的学生人数为:(名);
(2)
解:①由题意得:良好的人数为:(名),
∴优秀的人数为:(名),
∴补全统计图如下所示:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=;
(3)
解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有(名).
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.
3、
(1)图象见解析;
(2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
【分析】
(1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;
(2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.
(1)
乙离A地的距离(单位:m)与时间x之间的函数图像,如图即是.
(2)
根据题意结合图象可知甲、乙两人在途中相遇3次.
如图,第一次相遇在AB段,第二次相遇在BC段,第三次相遇在CD段,
根据题意可设的解析式为:,
∴,
解得:,
∴的解析式为.
∵甲的步行速度为100m/min,他每走半个小时就休息15min,
∴甲第一次休息时走了米,
对于,当时,即,
解得:.
故第一次相遇的时间为40分钟的时候;
设BC段的解析式为:,
根据题意可知B(45,3000),D (75,6000).
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得:,
故BC段的解析式为:.
相遇时即,故有,
解得:.
故第二次相遇的时间为60分钟的时候;
对于,当时,即,
解得:.
故第三次相遇的时间为80分钟的时候;
综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
【点睛】
本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.
4、
(1)①1;②描点见解析;③连线见解析
(2)①×;②×;③√
(3)当时,y随x的增大而减小
【分析】
(1)①将x=0代入即得m的值;②描出(0,1)即可;③把描出的点用平滑的曲线顺次连接即可;
(2)根据图像数形结合即可判断.
(3)根据图像再写一条符合反比例函数特点的性质即可.
(1)
①解:将代入解析式中解得;
②描点如图所示③补充图像如图所示:
(2)
根据函数图像可得:
①每一个分支上的函数值y随x的增大而减小,故①错误,应为×;
②图像关于(-1,0)对称,故②错误,应为×;
③x=-1时,无意义,函数图像与直线x=-1没有交点,应为√.
(3)
当时,y随x的增大而减小.
【点睛】
本题考查函数的图形及性质,解题的关键是熟练掌握研究函数的方法用列表、描点、连线作出图像,再数形结合研究函数性质.
5、
(1)见解析
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)△ACE的面积和△ABF的面积相等.理由见解析
【分析】
(1)利用等腰直角三角形的性质得到∠CAD=∠CDA=67.5°,利用角平分线的性质得到∠ABE=∠DBE=22.5°,∠BEA=135°,即可推出∠BEA+∠AEF=180°;
(2)证明Rt△AEG≌Rt△AFH,利用全等三角形的性质得到EG= FH,则△ACE和△ABF等底等高,即可证明结论.
(1)
证明:∵等腰直角△ABC中,∠BAC=90°,
∴∠ABC=∠C=45°,AB=AC,
∵CD=AB,则CD=AC,
∴∠CAD=∠CDA==67.5°,
∴∠BAE=90°-∠CAD=22.5°,
∵AD平分∠ABC,
∴∠ABE=∠DBE=22.5°,
∴∠BEA=180°-∠ABE-∠BAE=135°,
∵△AEF是等腰直角三角形,且∠EAF=90°,
∴∠AEF=∠F=45°,
∴∠BEA+∠AEF=180°,
∴B,E,F三点共线;
(2)
解:△ACE的面积和△ABF的面积相等.理由如下:
过点E作EG⊥AC于点G,过点F作FH⊥BA交BA延长线于点H,
∵∠HAF=180°-∠BAE-∠EAF=180°-22.5°-90°=67.5°,∠CAE=67.5°,
∴∠HAF=∠CAE,
∵△AEF是等腰直角三角形,
∴AE=AF,
∴Rt△AEG≌Rt△AFH,
∴EG= FH,
∵AB=AC,
∴△ACE和△ABF等底等高,
∴△ACE的面积和△ABF的面积相等.
【点睛】
本题考查了等腰直角三角形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
x
…
0
1
2
…
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
y
…
3
2
m
…
相关试卷
这是一份【中考专题】湖南省中考数学真题模拟测评 (A)卷(含答案及解析),共27页。试卷主要包含了利用如图①所示的长为a,如图,E,单项式的次数是等内容,欢迎下载使用。
这是一份中考专题湖南省张家界市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共28页。试卷主要包含了利用如图①所示的长为a,下列等式变形中,不正确的是,下列方程变形不正确的是等内容,欢迎下载使用。
这是一份备考练习湖南省张家界市中考数学模拟真题测评 A卷(含答案解析),共26页。试卷主要包含了如图,某汽车离开某城市的距离y,下列图像中表示是的函数的有几个等内容,欢迎下载使用。