终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    第04讲 解一元二次方程 因式分解法与换元法-2024-2025学年九年级数学上册高效讲与练(人教版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      第04讲 解一元二次方程——因式分解法与换元法(解析版).docx
    • 练习
      第04讲 解一元二次方程——因式分解法与换元法.docx
    第04讲 解一元二次方程——因式分解法与换元法(解析版)第1页
    第04讲 解一元二次方程——因式分解法与换元法(解析版)第2页
    第04讲 解一元二次方程——因式分解法与换元法(解析版)第3页
    第04讲 解一元二次方程——因式分解法与换元法第1页
    第04讲 解一元二次方程——因式分解法与换元法第2页
    第04讲 解一元二次方程——因式分解法与换元法第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第04讲 解一元二次方程 因式分解法与换元法-2024-2025学年九年级数学上册高效讲与练(人教版)

    展开

    这是一份第04讲 解一元二次方程 因式分解法与换元法-2024-2025学年九年级数学上册高效讲与练(人教版),文件包含第04讲解一元二次方程因式分解法与换元法解析版docx、第04讲解一元二次方程因式分解法与换元法docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
    第04讲 解一元二次方程——因式分解法与换元法知识点01 因式分解的方法因式分解的方法: ①提公因式法: ; ②公式法:平方差公式: ; 完全平方公式: ; ③十字相乘法:分解,若且,则 。 题型考点:①对因式分解进行熟练应用。【即学即练1】1.把下列各式因式分解:(1)2a2﹣4a; (2)(a2+9)2﹣36a2; (3 )x2+2x﹣15.知识点02 利用因式分解法解一元二次方程因式分解法解一元二次方程的基本步骤: ①将一元二次方程的右边全部移到左边,使其右边为 。 ②对方程的左边进行 ,使其成为两个整式的积的形式。 ③别分令两个整式为 ,得到两个一元一次方程。 ④解这两个一元一次方程,一元一次方程的解合起来就是一元二次方程的解。 题型考点:①根据求根公式确定的值。②利用公式法解一元二次方程。【即学即练1】2.一元二次方程(x﹣5)2=4(x﹣5)的解为(  )A.x=5 B.x=﹣5 C.x1=5x2=9 D.x1=5x2=1【即学即练2】3.方程x2﹣3x﹣18=0的根是(  )A.x1=3,x2=6 B.x1=﹣3,x2=6 C.x1=3,x2=﹣6 D.x1=﹣3,x2=﹣6【即学即练3】4.解方程(3x﹣4)2﹣(4x+1)2=0.知识点03 整体法或换元法解一元二次方程整体法或换元法: 在解一元二次方程时,有时候会把含有未知数的一个式子看作一个整体,然后用一个简单的字母表示,起达到方程简化的目的,在解其方程的方法叫做整体法或换元法。 例题讲解:【例】解方程. 解:设,则原方程可化为. 解得. 当y=1时,即x-1=1,解得x=2; 当y=4时,即x-1=4,解得x=5. 所以原方程的解为x1=2,x2=5. 题型考点:利用整体法或换元法解一元二次方程。【即学即练1】5.解方程(x2﹣1)2﹣5(x2﹣1)+4=0.【即学即练2】6.如果有理数a、b同时满足(a2+b2+3)(a2+b2﹣3)=16,那么a2+b2的值为(  )A.±5 B.5 C.﹣5 D.以上答案都不对 题型01 利用因式分解法解一元二次方程【典例1】用因式分解法解下列方程.(1)(2x﹣3)2﹣(x﹣2)2=0; (2)2(t﹣1)2+t=1.【典例2】用因式分解法解一元二次方程:(1)(4x+1)(5x﹣7)=0; (2)(2x+3)2=4(2x+3).题型02 整体法或换元法解一元二次方程【典例1】请你先认真阅读下列材料,再参照例子解答问题:已知(x+y﹣3)(x+y+4)=﹣10,求x+y的值;解:设x+y=t,则原方程可变形为(t﹣3)(t+4)=﹣10.即t2+t﹣2=0∴(t+2)(t﹣1)=0得t1=﹣2,t2=1,∴x+y=﹣2或x+y=1.已知(x2+y2﹣2)(x2+y2﹣3)=12,求x2+y2的值.【典例2】阅读材料:为了解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1看作一个整体,设x2﹣1=y,那么原方程可化为y2﹣5y+4=0①,解得y1=1,y2=4.当y=1,时,x2﹣1=1,∴x2=2.∴x=;当y=4时,x2﹣1=4,∴x2=5.∴x=.故原方程的解为,=,=,=.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用    法达到了降次的目的,体现了    的数学思想;(2)请利用以上知识解方程:(x2+x)2﹣5(x2+x)+4=0;(3)请利用以上知识解方程:x4﹣3x2﹣4=0.题型03 解含有绝对值的方程【典例1】阅读下面的材料,并完成相应的任务.材料:解含绝对值的方程:x2﹣5|x|﹣6=0.解:分两种情况:(1)当x≥0时,原方程可化为:x2﹣5x﹣6=0,解得x1=6,x2=﹣1(舍去).(2)当x<0时,原方程可化为:x2+5x﹣6=0,解得x1=﹣6,x2=1(舍去).综上所述:原方程的解是x1=6,x2=﹣6.任务:请参照上述方法解方程:x2﹣|x|﹣2=0.【典例2】分类讨论在数学中既是一个重要的策略思想又是一个重要的数学方法.例如对于像x2+|x|﹣6=0这样含有绝对值符号的方程,可采用如下的分类讨论方法:解:当x≥0时,原方程可化为x2+x﹣6=0.解得:x1=﹣3,x2=2.∵x≥0,∴x=2.当x<0时,原方程可化为x2﹣x﹣6=0,解得:x1=3,x2=﹣2.∵x<0,∴x=﹣2.综上可得:原方程的解为x1=﹣2,x2=2.仿照上面的解法,解方程:x2+|2x﹣1|﹣4=0.题型04 用适当的方法解一元二次方程【典例1】解下列方程(1)2x2﹣12=0; (2)x2+4x﹣12=0;; (4)3(x﹣2)2﹣1=5;(2x﹣1)2=(3﹣x)2; (6)x4﹣2x2+1=0;(7)(x﹣1)2﹣3(x﹣1)+2=0; (8)x2﹣3|x﹣1|=1.1.方程x2+10x+9=0的两个根是(  )A.x1=1,x2=9 B.x1=﹣1,x2=9 C.x1=1,x2=﹣9 D.x1=﹣1,x2=﹣92.用下列哪种方法解方程2(x﹣1)2=8最合适(  )A.配方法 B.开平方法 C.因式分解法 D.公式法3.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰的长,则这个三角形的周长是(  )A.12 B.15 C.12或15 D.18或94.方程(x﹣2)2=2x(x﹣2)的解是(  )A.x1=2,x2=1 B.x1=2,x2=﹣2 C.x1=2,x2=0 D.x1=2,x2=﹣15.已知某三角形的两边长恰是一元二次方程x2﹣6x+8=0的两根,则该三角形第三边长可能是(  )A.8 B.7 C.6 D.56.已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值为(  )A.0 B.4 C.4或﹣2 D.﹣27.已知实数x满足(x2﹣x)2﹣2(x2﹣x)﹣15=0,则代数式x2﹣x的值是    .8.已知方程x2﹣10x+21=0的根为x1=3,x2=7,则方程(2x﹣1)2﹣10(2x﹣1)+21=0的根是    .9.定义新运算“*”,规则:m*n=如1*2=2,(﹣)*=.若x2﹣x﹣6=0的两根分别为x1,x2,则x1*x2=   .10.菱形ABCD的一条对角线长为6cm,其边长是方程x2﹣2x﹣15=0的一个根,则菱形ABCD的面积为    cm2.11.解下列一元二次方程.(1)x2﹣4x﹣12=0; (2)x(4x﹣1)=3(4x﹣1).12.阅读与思考:解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了  转化 的数学思想;(2)请利用以上知识解方程:①(x2﹣x)2﹣5(x2﹣x)+4=0;②x4﹣3x2﹣4=0. 课程标准学习目标①复习巩固因式分解的方法②利用因式分解法解一元二次方程③整体法或换元法解一元二次方程复习巩固熟练掌握因式分解的几种方法。学会利用因式分解解一元二次方程。学会并掌握整体法或换元法解一元二次方程。解方程(x2﹣1)2﹣5(x2﹣1)+4=0,解:设x2﹣1=y,则原方程可化为:y2﹣5y+4=0①,解得y1=1,y2=4当y=1时,x2﹣1=1,∴x2=2,∴x=±当y=4时,x2﹣1=4,∴x2=5,∴x=±∴原方程的解为:x1=,x2=﹣,x3=,x4=﹣

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map