所属成套资源:2024年高考数学第二轮专题复习圆锥曲线
2024年高考数学第二轮专题复习圆锥曲线 专题19:双曲线的定直线问题9页
展开
这是一份2024年高考数学第二轮专题复习圆锥曲线 专题19:双曲线的定直线问题9页,共9页。
(2)若过的直线与双曲线交于,两点,试探究直线与直线的交点是否在某条定直线上?若在,请求出该定直线方程;若不在,请说明理由.
2.已知,分别是双曲线的左,右顶点,直线(不与坐标轴垂直)过点,且与双曲线交于,两点.
(1)若,求直线的方程;
(2)若直线与相交于点,求证:点在定直线上.
3.已知双曲线的中心为原点,左、右焦点分别为、,离心率为,点是直线上任意一点,点在双曲线上,且满足.
(1)求实数的值;
(2)证明:直线与直线的斜率之积是定值;
(3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点、,在线段上去异于点、的点,满足,证明点恒在一条定直线上.
4.设直线(其中,为整数)与椭圆交于不同两点,,与双曲线交于不同两点,,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
参考答案
1.(1);(2)存在,.
【分析】(1)由离心率可得,,设直线的方程为,将直线与双曲线方程联立求出点,根据三角形的面积即可求解.
(2)设,,设直线的方程为,则直线的方程为,直线的方程为,求出两直线的交点的横坐标,将直线与双曲线联立,利用韦达定理代入的横坐标表达式,化简即可求解.
【解析】 (1)设双曲线的焦距为,
因为离心率为2,所以,,
联立,得:,
所以点的坐标为,
因为,所以的面积为,所以,
双曲线的方程为.
(2)设,,直线的方程为,
直线的方程为,直线的方程为,
联立, 所以点的横坐标为,,
联立,得:,
,,
所以
,
直线与直线的交点在直线上.
【点评】 本题解题的关键是求出直线与直线的交点的横坐标,,考查了运算求解能力.
2.(1)或;(2)证明见解析.
【分析】(1)设直线的方程为并联立双曲线根据韦达定理可得与关系,结合可得,从而求得值得直线方程;
(2)列出直线与方程,并求点坐标得,故得证.
【解析】 设直线的方程为,设,,把直线与双曲线
联立方程组,,可得,
则,
(1),,由,可得,
即①,②,
把①式代入②式,可得,解得,,
即直线的方程为或.
(2)直线的方程为,直线的方程为,
直线与的交点为,故,即,
进而得到,又,
故,解得
故点在定直线上.
【点评】 直线与圆锥曲线综合问题,通常采用设而不求,结合韦达定理求解.
3.(1);(2)详见解析;(3)详见解析.
【分析】(1)根据双曲线的离心率列方程求出实数的值;(2)设点的坐标为,点的坐标为,利用条件确定与、之间的关系,再结合点在双曲线上这一条件,以及斜率公式来证明直线与直线的斜率之积是定值;(3)证法一是先设点、的坐标分别为、,结合(2)得到,,引入参数,利用转化为相应的条件,利用坐标运算得到点的坐标所满足的关系式,进而证明点恒在定直线上;证法二是设直线的方程为,将直线的方程与双曲线的方程联立,结合韦达定理,将条件进行等价转化为,结合韦达定理化简为,最后利用点在直线上得到,从而消去得到
,进而证明点恒在定直线上.
【解析】(1)根据双曲线的定义可得双曲线的离心率为,由于,解得,
故双曲线的方程为;
(2)设点的坐标为,点的坐标为,易知点,
则,,
,因此点的坐标为,
故直线的斜率,直线的斜率为,
因此直线与直线的斜率之积为,
由于点在双曲线上,所以,所以,
于是有
(定值);
(3)证法一:设点且过点的直线与双曲线的右支交于不同的两点、,由(2)知,,,
设,则,即,
整理得,
由①③,②④得,,
将,,代入⑥得,⑦,
将⑦代入⑤得,即点恒在定直线上;
证法二:依题意,直线的斜率存在,设直线的方程为,
由,
消去得,
因为直线与双曲线的右支交于不同的两点、,
则有,
设点,由,得,
整理得,
将②③代入上式得,
整理得,④
因为点在直线上,所以,⑤
联立④⑤消去得,所以点恒在定直线.
考点:1.双曲线的离心率;2.向量的坐标运算;3.斜率公式;4.韦达定理
4.9
【解析】由消去化简整理得
设,,则
①
由消去化简整理得
设,,则
②
因为,所以,此时.
由得.
所以或.由上式解得或.当时,由①和②得.因是整数,所以的值为,,,,,,.当,由①和②得.因是整数,所以,,.于是满足条件的直线共有9
相关试卷
这是一份2024年高考数学第二轮专题复习圆锥曲线 专题23:双曲线向量结合问题19页,共19页。试卷主要包含了单选题,解答题等内容,欢迎下载使用。
这是一份2024年高考数学第二轮专题复习圆锥曲线 专题15:双曲线的对称性问题16页,共16页。试卷主要包含了单选题,多选题,填空题等内容,欢迎下载使用。
这是一份2024年高考数学第二轮专题复习圆锥曲线 专题9:椭圆中的定直线问题25页,共25页。试卷主要包含了已知椭圆过点,且离心率为.,已知点是离心率为的椭圆,已知椭圆,点为椭圆外一点,在平面直角坐标系中,已知椭圆等内容,欢迎下载使用。