年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第7讲导数构造函数13种题型(原卷版+解析)

    2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第7讲导数构造函数13种题型(原卷版+解析)第1页
    2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第7讲导数构造函数13种题型(原卷版+解析)第2页
    2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第7讲导数构造函数13种题型(原卷版+解析)第3页
    还剩61页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第7讲导数构造函数13种题型(原卷版+解析)

    展开

    这是一份2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第7讲导数构造函数13种题型(原卷版+解析),共64页。
    【典例分析】
    函数是定义在区间上的可导函数,其导函数为,且满足,则不等式的解集为
    A.B.
    C.D.
    【变式演练】
    1.已知定义域为的奇函数的导函数为,当时,,若,则的大小关系正确的是
    2.已知的定义域为0,+∞,为的导函数,且满足,则不等式的解集是( )
    A.B.2,+∞C.D.1,+∞
    3.设函数在R上可导,其导函数为,且.则下列不等式在R上恒成立的是( )
    A.B.C.D.
    【题型二】 利用f(x)/x构造型
    【典例分析】
    函数在定义域0,+∞内恒满足:①,②,其中为的导函数,则
    A.B.C.D.
    【变式演练】
    1.已知定义在上的偶函数,其导函数为,若,,则不等式的解集是( )
    A.B.
    C.D.
    2.已知定义在上的函数的导函数为,若,,则不等式的解集为( )
    A.B.C.D.
    【题型三】 利用ef(x)构造型
    【典例分析】
    已知函数在上 可导,其导函数为,若满足:当时,>0,,则下列判断一定正确的是
    A.B.C.D.
    【变式演练】
    1.已知是上可导的图象不间断的偶函数,导函数为,且当时,满足,则不等式的解集为( )
    A.B.C.D.
    2.设函数的定义域为,是其导函数,若,,则不等式的解集是( )
    A.B.C.D.
    3.已知定义在上的函数的导函数为,若,,则不等式的解集为( )
    A.B.C.D.
    【题型四】 用f(x)/e构造型
    【典例分析】
    已知函数是定义在上的可导函数,且对于,均有,则有
    A.
    B.
    C.
    D.
    【变式演练】
    1.已知是定义在上的偶函数,当时,(其中为的导函数),若,则的解集为( )
    A.B.C.D.
    2.已知函数是定义在上的可导函数,且对于,均有,则有
    A.
    B.
    C.
    D.
    3.已知定义在上的可导函数满足:,则与的大小关系是
    A.B.C.D.不确定
    【题型五】 利用sinx与f(x)构造型
    【典例分析】
    已知定义在上的函数,为其导函数,且恒成立,则
    A.B.
    C.D.
    【变式演练】
    1.已知奇函数的导函数为,且在上恒有成立,则下列不等式成立的( )
    A.B.
    C.D.
    2.已知偶函数是定义在上的可导函数,当时,,若,则实数的取值范围为( )
    A.B.C.D.
    3.设是定义在上的奇函数,其导函数为,当时,,则不等式的解集为( )
    A.B.
    C.D.
    【题型六】 利用csx与f(x)构造型
    【典例分析】
    已知函数的定义域为,其导函数是.有,则关于x的不等式的解集为( )
    A.B.C.D.
    【变式演练】
    1.已知偶函数的定义域为,其导函数为,当时,有成立,则关于x的不等式的解集为( )
    A.B.
    C.D.
    2.已知函数的定义域为,其导函数为.若,且,则下列结论正确的是
    A.是增函数B.是减函数C.有极大值D.有极小值
    【题型七】 复杂型:e与af(x)+bg(x)等构造型
    【典例分析】
    设定义在上的函数的导函数为,若,,则不等式(其中为自然对数的底数)的解集为( )
    A.B.
    C.D.
    【变式演练】
    1.函数是定义在上的可导函数,为其导函数,若且,则不等式的解集为__________.
    2.函数是定义在上的可导函数,为其导函数,若,且,则的解集为( )
    A.B.C.D.
    3.设定义在上的函数的导函数为,若,,则不等式(其中为自然对数的底数)的解集为
    A.B.
    C.D.
    【题型八】 复杂型:(kx+b)与f(x)型
    【典例分析】
    已知函数的定义域为,其图象关于点中心对称,其导函数,当时,,则不等式的解集为
    A.B.C.D.
    【变式演练】
    1.设函数在上存在导函数,对任意实数,都有,当时,,若,则实数的最小值是( )
    A.B.C.D.
    2.已知定义域为的函数满足,其中为的导函数,则当时,不等式的解集为( )
    A.B.
    C.D.
    3.已知是奇函数的导函数,当时,,则不等式的解集为
    A.B.C.D.
    【题型九】 复杂型:与ln(kx+b)结合型
    【典例分析】
    设函数是定义在上的连续函数,且在处存在导数,若函数及其导函数满足,则函数
    A.既有极大值又有极小值B.有极大值 ,无极小值
    C.有极小值,无极大值D.既无极大值也无极小值
    【变式演练】
    1..已知是定义在上的奇函数,是的导函数,且满足:则不等式的解集为( )
    A.B.C.D.
    2.设定义在上的函数恒成立,其导函数为,若,则( )
    A.B.
    C.D.
    3.已知定义在上的连续奇函数的导函数为,已知,且当时有成立,则使成立的的取值范围是( )
    A.B.
    C.D.
    【题型十】 复杂型:基础型添加因式型
    【典例分析】
    已知函数的导函数为,对任意的实数都有,,则不等式的解集是( )
    A.B.C.D.
    【变式演练】
    1.定义在0,+∞上的函数的导函数满足,则下列不等式中,一定成立的是
    A.B.
    C.D.
    2.已知定义在上的函数的导函数为,且满足,则关于不等式的解集为( )
    A.B.C.D.
    3.已知函数为上的可导函数,其导函数为,且满足恒成立,,则不等式的解集为
    A.B.C.D.
    【题型十一】 复杂型:二次构造
    【典例分析】
    已知是函数的导函数,且对于任意实数都有,,则不等式的解集为( )
    A.B.
    C.D.
    【变式演练】
    1.已知定义域为的函数满足(为函数的导函数),则不等式的解集为( )
    A.B.C.D.
    2.已知函数的导函数为,且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是( )
    A.B.C.D.
    3.已知定义域为的函数的导函数为,且,若,则函数的零点个数为( )
    A.1B.2C.3D.4
    【题型十二】 综合构造
    【典例分析】
    定义在上的连续函数的导函数为,且成立,则下列各式一定成立的是( )
    A.B.
    C.D.
    【变式演练】
    1.已知函数的导函数为,对任意的实数都有,,则不等式的解集是( )
    A.B.C.D.
    2.定义在上的函数的导函数为,当时,且,.则下列说法一定正确的是( )
    A.B.
    C.D.
    3.已知函数的定义域为,且是偶函数,(为的导函数).若对任意的,不等式恒成立,则实数的取值范围是( )
    A.B.
    C.D.
    【题型十三】 技巧计算型构造
    【典例分析】
    定义在上的函数的导函数为,若,且,则
    A.B.
    C.D.
    【变式演练】
    1.已知是定义在上的奇函数,记的导函数为,当时,满足.若使不等式成立,则实数的最小值为
    A.B.C.D.
    2.定义在上的函数满足:是的导函数, 则不等式的解集为
    A.B.C.D.
    3.已知函数在上处处可导,若,则( )
    A.一定小于 B.一定大于
    C.可能大于 D.可能等于
    【课后练习】
    1.已知定义在上的函数的导函数为,且,则( )
    A.
    B.
    C.
    D.
    2.定义在上的函数有不等式恒成立,其中为函数的导函数,则( )
    A.B.C.D.
    3.已知函数的定义域为,其导函数为,对恒成立,且,则不等式的解集为( )
    A.B.C.D.
    4.若函数满足:,,其中为的导函数,则函数在区间的取值范围为( )
    A.B.C.D.
    5.若定义域为的函数的导函数为,并且满足,则下列正确的是( )
    A.B.
    C.D.
    6.已知是定义在上的函数,是的导函数,且满足,,则的解集为
    A.B.C.D.
    7.设函数是函数的导函数,若,且当时,,则不等式的解集为( )
    A.B.C.D.
    8.设是定义在上的函数,其导函数为,若,,则不等式(其中为自然对数的底数)的解集为( )
    A.B.
    C.D.
    9.已知偶函数的定义域为,其导函数为,当时,有成立,则关于的不等式的解集为
    A.B.
    C.D.
    10.设函数是偶函数的导函数,当时,,若,则实数的取值范围为( )
    A.B.C.D.
    11.已知定义在R上的函数,其导函数为,若,且当时,,则不等式的解集为( )
    A.B.C.D.
    12.已知函数的导函数为,且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有唯一一个整数,则实数的取值范围是( )
    A.B.C.D.
    13.已知定义在上的奇函数,导函数为,且当时,,若关于的不等式恒成立,则实数的取值范围为( )
    A.B.C.D.
    14.设函数f(x)的导函数为,f(0)=1,且,则的解集是
    A.B.C.D.
    15.已知是定义在区间上的函数,是的导函数,且,,则不等式的解集是__________.
    16.函数是定义在上的可导函数,为其导函数,若,且,则的解集为( )
    A.B.C.D.
    17.已知定义在上的函数的导函数为、的图象关于点对称,且对于任意的实数,均有成立,若,则不等式的解集为( )
    A.B.C.D.
    第7讲 导数构造函数13类
    【题型一】 利用xf(x)构造型
    【典例分析】
    函数是定义在区间上的可导函数,其导函数为,且满足,则不等式的解集为
    A.B.
    C.D.
    【答案】D
    【详解】
    设,则,由已知当时,,是增函数,不等式等价于,所以,解得.
    点睛:本题考查导数的综合应用,解题关键是构造新函数,从而可以利用已知的不等式关系判断其导数的正负,以确定新函数的单调性,在构造新函数时,下列构造经常用:,,,,构造新函数时可结合所要求的问题确定新函数的形式.
    【变式演练】
    1.已知定义域为的奇函数的导函数为,当时,,若,则的大小关系正确的是
    A.B.C.D.
    【答案】C
    【解析】
    分析:构造函数,利用已知条件确定的正负,从而得其单调性.
    详解:设,则,∵,即,∴当时,,当时,,递增.又是奇函数,∴是偶函数,∴,,∵,∴,即.
    故选C.
    2.已知的定义域为,为的导函数,且满足,则不等式的解集是( )
    A.B.C.D.
    【答案】B
    【分析】
    根据题意,构造函数,结合函数的单调性解不等式,即可求解.
    【详解】
    根据题意,构造函数,,则,
    所以函数的图象在上单调递减.
    又因为,所以,
    所以,解得或(舍).
    所以不等式的解集是.
    故选:B.
    3.设函数在R上可导,其导函数为,且.则下列不等式在R上恒成立的是( )
    A.B.C.D.
    【答案】A
    【分析】
    根据给定不等式构造函数,利用导数探讨的性质即可判断作答.
    【详解】
    依题意,令函数,则,
    因,于是得时,时,
    从而有在上单调递减,在上单调递增,
    因此得:,而,即f(x)不恒为0,
    所以恒成立.故选:A
    【题型二】 利用f(x)/x构造型
    【典例分析】
    函数在定义域内恒满足:①,②,其中为的导函数,则
    A.B.C.D.
    【答案】D
    【详解】令,,,
    ∵,,∴,,
    ∴函数在上单调递增,∴,即,,
    令,,,
    ∵,,,
    ∴函数在上单调递减,∴,即,,故选D.
    【变式演练】
    1.已知定义在上的偶函数,其导函数为,若,,则不等式的解集是( )
    A.B.
    C.D.
    【答案】A
    【分析】根据题目中信息其导函数为,若可知,需构造函数,
    利用导函数判断函数的单调性,利用函数的单调性、奇偶性来解题,当 时,即,,当 时,即,.
    【详解】构造函数 , ,
    当 时,,故,在 上单调递增,
    又为偶函数, 为偶函数,所以为偶函数,在 单调递减.
    ,则,;,
    当 时,即,,所以 ;
    当 时,即,,所以.
    综上所述,.故选:A
    2.已知定义在上的函数的导函数为,若,,则不等式的解集为( )
    A.B.C.D.
    【答案】C
    【分析】
    由,可得,令,对其求导可得,可得函数在上单调递增,可得,可得原不等式的解集.
    【详解】
    解:因为,所以,即.
    令,则,所以函数在上单调递增.又因为,不等式,可变形为,即,所以,即不等式的解集为.
    故选:C.
    【题型三】 利用ef(x)构造型
    【典例分析】
    已知函数在上 可导,其导函数为,若满足:当时,>0,,则下列判断一定正确的是
    A.B.C.D.
    【答案】D
    【分析】
    构造函数,结合导函数,判定的单调性,得对称轴,对选项判断即可.
    【详解】
    构造函数,计算导函数得到=,由>0,得当,>0当时,

    相关试卷

    2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第5讲导数切线方程11种题型(原卷版+解析):

    这是一份2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第5讲导数切线方程11种题型(原卷版+解析),共39页。

    2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第25讲圆锥小题压轴九类(原卷版+解析):

    这是一份2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第25讲圆锥小题压轴九类(原卷版+解析),共44页。

    2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第23讲立体几何中求角度、距离类型(原卷版+解析):

    这是一份2024年高考数学二轮复习全套培优微专题高考重难点题型归纳32讲第23讲立体几何中求角度、距离类型(原卷版+解析),共74页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map