所属成套资源:2024年中考数学【热点重点难点】专练(江苏专用)(原卷版+解析)
2024年中考数学【热点重点难点】专练热点04二次函数及综合问题(江苏专用)(原卷版+解析)
展开
这是一份2024年中考数学【热点重点难点】专练热点04二次函数及综合问题(江苏专用)(原卷版+解析),共72页。试卷主要包含了 二次函数及综合问题,了解,理解,2x2+x+2等内容,欢迎下载使用。
【考纲解读】
1.了解:二次函数的概念;二次函数的对称轴;二次函数图象与系数的关系.
2.理解:二次函数的性质与图象;确定二次函数的解析式.
3.会:会判断一个函数是否为二次函数;会在对称轴左、右判断函数的增减性;会用数形结合思想解决问题.
4.掌握:二次函数的性质;用待定系数法确定函数解析式;利用二次函数来解决实际问题的基本思路;掌握二次函数图象与x轴交点的个数与一元二次方程根的关系;掌握二次函数图象与一元二次不等式的关系;将实际问题转化为数学中的二次函数问题.
5.能:用待定系数法确定函数解析式;判别式、抛物线与x轴的交点、二次方程的根的情况三者之间的联系;能根据图象信息解决相应的问题.
【命题形式】
1.从考查的题型来看,涉及本知识点的题目主要以选择题与解答题的形式考查,也可能在填空题中出现,题目难度中高档.
2.从考查内容来看,主要有:二次函数的性质与图象;用待定系数法确定函数解析式;二次函数的最值与平移问题;函数与几何图形相关的综合应用等.
3.从考查热点来看,主要有:二次函数的性质与图象;通过具体问题情境学会用三种方式表示二次函数关系;一次函数与二次函数,函数与其他综合相关的实际问题;通过在实际问题中应用二次函数的性质,发展应用二次函数解决实际问题的能力.
【限时检测】
A卷(真题过关卷)
备注:本套试卷所选题目多数为近三年江苏省各地区中考真题,针对性强,可作为一轮、二轮复习必刷真题过关训练.
一、单选题
1. (2023·江苏泰州·统考中考真题)已知点−3,y1,−1,y2,1,y3在下列某一函数图像上,且y30B.a>1C.a≠1D.a0时,y随x的增大而增大.
则这个函数表达式可能是( )
A.y=−xB.y=1xC.y=x2D.y=−1x
7. (2023·江苏无锡·统考中考真题)设P(x,y1),Q(x,y2)分别是函数C1,C2图象上的点,当a≤x≤b时,总有−1≤y1−y2≤1恒成立,则称函数C1,C2在a≤x≤b上是“逼近函数”,a≤x≤b为“逼近区间”.则下列结论:
①函数y=x−5,y=3x+2在1≤x≤2上是“逼近函数”;
②函数y=x−5,y=x2−4x在3≤x≤4上是“逼近函数”;
③0≤x≤1是函数y=x2−1,y=2x2−x的“逼近区间”;
④2≤x≤3是函数y=x−5,y=x2−4x的“逼近区间”.
其中,正确的有( )
A.②③B.①④C.①③D.②④
8. (2023·江苏苏州·统考中考真题)如图,线段AB=10,点C、D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动,在点P移动过程中作如下操作:先以点P为圆心,PA、PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点P的移动时间为(秒).两个圆锥的底面面积之和为S.则S关于t的函数图像大致是( )
A.B.C.D.
二、填空题
9. (2023·江苏泰州·统考中考真题)在函数y=(x−1)2中,当x>1时,y随x的增大而 ___.(填“增大”或“减小”)
10. (2023·江苏无锡·统考中考真题)把二次函数y=x2+4x+m的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件:________.
11. (2023·江苏连云港·统考中考真题)如图,一位篮球运动员投篮,球沿抛物线y=−0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是_________m.
12. (2023·江苏盐城·统考中考真题)若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是____________.
13. (2023·江苏南通·统考中考真题)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是ℎ=−5t2+20t,当飞行时间t为___________s时,小球达到最高点.
14. (2023·江苏徐州·统考中考真题)若二次函数y=x2−2x−3的图象上有且只有三个点到x轴的距离等于m,则m的值为________.
15. (2023·江苏连云港·统考中考真题)某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.
16. (2023·江苏无锡·统考中考真题)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:________.
三、解答题
17. (2023·江苏盐城·统考中考真题)已知抛物线y=a(x−1)2+ℎ经过点(0,−3)和(3,0).
(1)求a、ℎ的值;
(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.
18. (2023·江苏常州·统考中考真题)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图像关于原点对称;④函数的图像关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.
(1)从盒子A中任意抽出1支签,抽到①的概率是______;
(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.
19. (2023·江苏淮安·统考中考真题)端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B品牌粽子120袋,总费用为8100元.
(1)求A、B两种品牌粽子每袋的进价各是多少元;
(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?
20. (2023·江苏无锡·统考中考真题)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).
(1)若矩形养殖场的总面积为36m2,求此时x的值;
(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?
21. (2023·江苏泰州·统考中考真题)如图,二次函数y1=x2+mx+1的图像与y轴相交于点A,与反比例函数y2=kx(x>0)的图像相交于点B(3,1).
(1)求这两个函数的表达式;
(2)当y1随x的增大而增大且y12.
(1)当该函数的图像经过原点O0,0,求此时函数图像的顶点A的坐标;
(2)求证:二次函数y=x2+(m−2)x+m−4的顶点在第三象限;
(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线y=−x−2上运动,平移后所得函数的图像与y轴的负半轴的交点为B,求△AOB面积的最大值.
23. (2023·江苏泰州·统考中考真题)农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同.以每棵树上桃子的数量x(个)为横坐标、桃子的平均质量y(克/个)为纵坐标,在平面直角坐标系中描出对应的点,发现这些点大致分布在直线AB附近(如图所示).
(1)求直线AB的函数关系式;
(2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式w=1100y+2.在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?
24. (2023·江苏连云港·统考中考真题)如图,抛物线y=mx2+m2+3x−(6m+9)与x轴交于点A、B,与y轴交于点C,已知B(3,0).
(1)求m的值和直线BC对应的函数表达式;
(2)P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;
(3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标.
25. (2023·江苏镇江·统考中考真题)一次函数y=12x+1的图像与x轴交于点A,二次函数y=ax2+bx+c(a≠0)的图像经过点A、原点O和一次函数y=12x+1图像上的点B(m,54).
(1)求这个二次函数的表达式;
(2)如图1,一次函数y=12x+n(n>−916,n≠1)与二次函数y=ax2+bx+c(a≠0)的图像交于点C(x1,y1)、D(x2,y2)(x1
相关试卷
这是一份2024年中考数学【热点重点难点】专练热点05三角形的全等与相似(江苏专用)(原卷版+解析),共82页。试卷主要包含了 三角形的全等与相似,2米D.3,5a=3×1,,41等内容,欢迎下载使用。
这是一份2024年中考数学【热点重点难点】专练热点02方程(组)与不等式(组)(江苏专用)(原卷版+解析),共39页。试卷主要包含了 方程,B.x=3,y=2,5.,7,等内容,欢迎下载使用。
这是一份2024年中考数学【热点重点难点】专练热点01数与式(江苏专用)(原卷版+解析),共60页。试卷主要包含了数与式,4×109C.4,5,求a+b的值.,11×108B.1等内容,欢迎下载使用。