所属成套资源:中考数学总复习精品专题(原卷版+解析)
中考数学总复习专题17相似三角形(10个高频考点)(举一反三)(全国版)(原卷版+解析)
展开
这是一份中考数学总复习专题17相似三角形(10个高频考点)(举一反三)(全国版)(原卷版+解析),共72页。
TOC \ "1-1" \h \u
\l "_Tc258" 【考点1 比例的性质】 PAGEREF _Tc258 \h 1
\l "_Tc13452" 【考点2 比例线段】 PAGEREF _Tc13452 \h 2
\l "_Tc26158" 【考点3 黄金分割】 PAGEREF _Tc26158 \h 3
\l "_Tc10422" 【考点4 平行线分线段成比例】 PAGEREF _Tc10422 \h 6
\l "_Tc26185" 【考点5 相似多边形】 PAGEREF _Tc26185 \h 7
\l "_Tc15292" 【考点6 相似三角形的判定与性质】 PAGEREF _Tc15292 \h 9
\l "_Tc30668" 【考点7 网格中的相似三角形】 PAGEREF _Tc30668 \h 12
\l "_Tc6545" 【考点8 相似三角形中的动点问题】 PAGEREF _Tc6545 \h 13
\l "_Tc20691" 【考点9 相似三角形的应用】 PAGEREF _Tc20691 \h 15
\l "_Tc14858" 【考点10 位似变换】 PAGEREF _Tc14858 \h 17
【要点1 比例的性质】
【考点1 比例的性质】
【例1】(2022·浙江杭州·模拟预测)一组不为零的数a,b,c,d,满足ab=cd,则以下等式不一定成立的是( )
A.ac=bdB.a+bb=c+dd
C.a−9b=c−9dD.a−9ba+9b=c−9dc+9d
【变式1-1】(2022·江苏镇江·统考中考真题)《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的_________倍.
【变式1-2】(2022·广东茂名·统考一模)若x,y,z都是正整数,且3x=4y=5z,则x+y+z的最小值是________.
【变式1-3】(2022·四川成都·统考二模)已知a、b、c、满足ba+c=ac+b=ca+b=k,从下列四点:① (1,12);②(2,1);③ (1,−12);④(1,﹣1),中任意取一点恰好在正比例函数y=kx图象上的概率是_______.
【要点2 成比例线段的概念】
1.比例的项:
在比例式(即)中,a,d称为比例外项,b,c称为比例内项.特别地,在比例式(即)中,b称为a,c的比例中项,满足.
2.成比例线段:
四条线段a,b,c,d中,如果a和b的比等于c和d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.
【考点2 比例线段】
【例2】(2022·江苏泰州·统考中考模拟)下列各组线段中,成比例的是( )
A.1,2,2,4B.1,2,3,4
C.3,5,9,13D.1,2,2,3
【变式2-1】(2022·湖北武汉·校考一模)在比例尺为1:2000000的地图上,量得甲、乙两地的距离是30cm,则两地的实际距离为( )
A.600000kmB.6000kmC.600kmD.60km
【变式2-2】(2022·河北石家庄·石家庄二十三中校考模拟预测)如果a:b=12:8,且b是a,c的比例中项,那么b:c等于( )
A.4:3B.3:2C.2:3D.3:4
【变式2-3】(2022·山西·校联考二模)定义:如图1,点M、N把线段AB分割成三条线段AM、MN和BN,若MN2=AM·BN,则称MN是线段AB的比例中段,M、N是线段AB的中段分点.
(1)已知点M、N是线段AB的中段分点.
①若AM=2,MN=3,则BN= ;
②在图1中,若AB=7,MN=2,求AM的长.
(2)如图2,在ΔABC中,MN是线段AB的比例中段,F、G分别是线段AC、BC延长线上的点,且FG∥AB,MC、NC的延长线分别交线段FG于点P,K.探究PK是否为线段FG的比例中段,如果是,请给出证明,如果不是,请说明理由..
【要点3 黄金分割】
如图,若线段AB上一点C,把线段AB分成两条线段AC和BC(),且使AC是AB和BC的比例中项(即),则称线段AB被点C黄金分割,点C叫线段AB的黄金分割点,其中,,AC与AB的比叫做黄金比.(注意:对于线段AB而言,黄金分割点有两个.)
【考点3 黄金分割】
【例3】(2022·四川成都·成都市树德实验中学校考模拟预测)如图,点R是正方形ABCD的AB边上线段AB的黄金分割点,且AR>RB,S1表示以AR为边长的正方形面积;S2表示以BC为长,BR为宽的矩形的面积,S3表示正方形除去S1,S2剩余的面积,则S1:S2的值为______.
【变式3-1】(2022·陕西西安·校考模拟预测)符合黄金分割比例形式的图形很容易使人产生视觉上的美感.如图所示的五角星中,AD=BC,且C、D两点都是AB的黄金分割点,若CD=1,则AB的长是_______________.
【变式3-2】(2022·湖南娄底·统考中考真题)九年级融融陪同父母选购家装木地板,她感觉某品牌木地板拼接图(如实物图)比较美观,通过手绘(如图)、测量、计算发现点E是AD的黄金分割点,即DE≈0.618AD.延长HF与AD相交于点G,则EG≈________DE.(精确到0.001)
【变式3-3】(2022·贵州遵义·统考三模)(1)数学活动一
宽与长的比是5−12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.世界各国许多著名的建筑,都采用了黄金矩形的设计.在数学活动课上,小红按如下步骤折叠出一个矩形:
第一步,在一张矩形纸片的一端,利用图①的方法折出一个正方形ABCD,然后把纸片展平;
第二步,如图②,把这个正方形ABCD对折成两个完全重合的矩形,再把纸片展平;
第三步,如图③,折出内侧矩形EFBC的对角线CF,并把CF折到图中所示FN处;
第四步,如图④,展平纸片,按照点N折出NM,得到矩形BNMC.
若AD=2,请证明矩形BNMC是黄金矩形.
(2)数学活动二
如图⑤,点C在线段AB上,且满足AC:BC=BC:AB,即BC2=AC⋅AB,此时,我们说点C是线段AB的黄金分割点,且通过计算可得BCAB=5−12.小红发现还可以从活动一的第三步开始修改折叠方式,如图⑥,折出右侧矩形EFBC的对角线EB,把AB边沿BG折叠,使得A点落在对角线BE上的K点处,若AD=2,请通过计算说明G点是AD的黄金分割点.
【要点4 平行线分线段成比例定理】
两条直线被三条平行线所截,所得的对应线段成比例,简称为平行线分线段成比例定理.如图:如果,则,,.
【小结】若将所截出的小线段位置靠上的(如AB)称为上,位置靠下的称为下,两条线段合成的线段称为全,则可以形象的表示为,,.
【要点5 平行线分线段成比例定理的推论】
平行于三角形一边的直线,截其它两边(或两边的延长线),所得的对应线段成比例.如图:如果EF//BC,则,,.
平行线分线段成比例定理的推论的逆定理
若或或,则有EF//BC.
【注意】对于一般形式的平行线分线段成比例的逆定理不成立,反例:任意四边形中一对对边的中点的连线与剩下两条边,这三条直线满足分线段成比例,但是它们并不平行.
【小结】推论也简称“A”和“8”,逆定理的证明可以通过同一法,做 交AC于点,再证明与F重合即可.
【考点4 平行线分线段成比例】
【例4】(2022·四川巴中·统考中考真题)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为( )
A.4B.5C.6D.7
【变式4-2】(2022·宁夏银川·校考二模)如图所示,点O是矩形ABCD对角线AC的中点,OE∥AB交AD于点E.若OE=3,BC=8,则OB的长为___________.
【变式4-3】(2022·广西·统考中考真题)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.
(1)求证:DE是⊙O的切线
(2)若AEDE=23,AF=10,求⊙O的半径.
【考点5 相似多边形】
【例5】(2022·河南·统考三模)取一张长为a,宽为b的长方形纸片,将它进行如图所示的两次对折后得到一张小长方形纸片,若要使小长方形与原长方形相似,则ba的值为( )
A.22B.12C.24D.14
【变式5-1】(2022·河北·模拟预测)如图所示的三个矩形中,其中相似形是( )
A.甲与乙B.乙与丙C.甲与丙D.以上都不对
【变式5-2】(2022·广东广州·广州市第六十五中学校考一模)如图,若正方形A1B1C1D1内接于正方形ABCD的内接圆,则A1B1AB的值为( )
A.12B.22C.14D.24
【变式5-3】(2022·河北·模拟预测)甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.
乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形相似.
对于两人的观点,下列说法正确的是( )
两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对
【要点6 相似三角形的判定】
【要点7 相似三角形的性质】
【考点6 相似三角形的判定与性质】
【例6】(2022·四川攀枝花·统考中考真题)如图,在矩形ABCD中,AB=6,AD=4,点E、F分别为BC、CD的中点,BF、DE相交于点G,过点E作EH∥CD,交BF于点H,则线段GH的长度是( )
A.56B.1C.54D.53
【变式6-1】(2022·江苏淮安·统考中考真题)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AC边上的一点,过点D作DF∥AB,交BC于点F,作∠BAC的平分线交DF于点E,连接BE.若△ABE的面积是2,则DEEF的值是______.
【变式6-2】(2022·贵州安顺·统考中考真题)已知正方形ABCD的边长为4,E为CD上一点,连接AE并延长交BC的延长线于点F,过点D作DG⊥AF,交AF于点H,交BF于点G,N为EF的中点,M为BD上一动点,分别连接MC,MN.若S△DCGS△FCE=19,则MC+MN的最小值为______.
【变式6-3】(2022·湖北襄阳·统考中考真题)矩形ABCD中,ABBC=k2(k>1),点E是边BC的中点,连接AE,过点E作AE的垂线EF,与矩形的外角平分线CF交于点F.
(1)【特例证明】如图(1),当k=2时,求证:AE=EF;
小明不完整的证明过程如下,请你帮他补充完整.
(2)【类比探究】如图(2),当k≠2时,求AEEF的值(用含k的式子表示);
(3)【拓展运用】如图(3),当k=3时,P为边CD上一点,连接AP,PF,∠PAE=45°,PF=5,求BC的长.
【考点7 网格中的相似三角形】
【例7】(2022·湖北武汉·校联考二模)如图是由小正方形组成的8×7网格,每个小正方形的顶点叫做格点,△ABC的三个顶点都是格点,边AC上的D也是一个格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.
(1)在图(1)中,先将线段CB绕点C顺时针旋转90°,画出对应线段CE,再在CE上画点F,使△BCF∽△BDA;
(2)在图(2)中,先在边AB上画点G,使DG∥BC,再在边BC上画点H,使AH+DH值最小.
【变式7-1】(2022·湖北省直辖县级单位·校联考一模)如图,在6×10的方格纸ABCD中有一个格点△EFG,请按要求画线段.
(1)在图1中,过点O画一条格点线段PQ(端点在格点上),使点P,Q分别落在边AD,BC上,且PQ与FG的一边垂直.
(2)在图2中,仅用没有刻度的直尺找出EF上一点M,EG上一点N,连结MN,使△EMN和△EFG的相似比为2:5.(保留作图痕迹)
【变式7-2】(2022·江苏无锡·统考一模)如图,在边长为1小正方形的网格中,△ABC的顶点A、B、C均落在格点上,请用无刻度的直尺按要求作图.(保留画图痕迹,不需证明)
(1)如图①,点P在格点上,在线段AB上找出所有符合条件的点Q,使△APQ和△ABC相似;
(2)如图②,在AC上作一点M,使以M为圆心,MC为半径的⊙M与AB相切,并直接写出此时⊙M的半径为 .
【变式7-3】(2022·江西宜春·校联考模拟预测)如图,在5×5的正方形网格中,ΔABC的顶点都是格点(小正方形的顶点),且点D是AB边的中点.请仅用无刻度的直尺分别按下列要求画图(不写画法,保留画图痕迹).
(1)如图1,在AC边上找点E,使ΔADE与ΔABC相似;
(2)如图2,在BC边上找点F,使ΔDBF与ΔABC相似.
【考点8 相似三角形中的动点问题】
【例8】(2022·江苏宿迁·统考中考真题)如图,在矩形ABCD中,AB=6,BC=8,点M、N分别是边AD、BC的中点,某一时刻,动点E从点M出发,沿MA方向以每秒2个单位长度的速度向点A匀速运动;同时,动点F从点N出发,沿NC方向以每秒1个单位长度的速度向点C匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF,过点B作EF的垂线,垂足为H.在这一运动过程中,点H所经过的路径长是_____.
【变式8-1】(2022·四川绵阳·统考中考真题)如图,平行四边形ABCD中,DB=23,AB=4,AD=2,动点E,F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.
(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为23秒时,设CE与DF交于点P,求线段EP与CP长度的比值;
(2)如图2,设点E的速度为1个单位每秒,点F的速度为3个单位每秒,运动时间为x秒,ΔAEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?
(3)如图3,H在线段AB上且AH=13HB,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使EM=HM.并说明理由.
【变式8-2】(2022·山东青岛·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,将△ABC绕点A按逆时针方向旋转90°得到△ADE,连接CD.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点A出发,沿AD方向匀速运动,速度为1cm/s.PQ交AC于点F,连接CP,EQ.设运动时间为t(s)(0
相关试卷
这是一份中考数学总复习专题17相似三角形(10个高频考点)(强化训练)(全国版)(原卷版+解析),共79页。
这是一份中考数学一轮复习高频考点专题17 相似三角形(10个高频考点)(举一反三)(2份打包,原卷版+解析版),文件包含中考数学一轮复习高频考点专题17相似三角形10个高频考点举一反三原卷版doc、中考数学一轮复习高频考点专题17相似三角形10个高频考点举一反三解析版doc等2份试卷配套教学资源,其中试卷共94页, 欢迎下载使用。
这是一份(全国通用)中考数学总复习 专题03 分式(10个高频考点)(举一反三)(原卷版+解析),共30页。