搜索
    上传资料 赚现金
    英语朗读宝

    中考数学一轮复习满分突破考点题型专练专题23 平行四边形(2份打包,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      中考数学一轮复习满分突破考点题型专练专题23 平行四边形(原卷版).doc
    • 解析
      中考数学一轮复习满分突破考点题型专练专题23 平行四边形(解析版).doc
    中考数学一轮复习满分突破考点题型专练专题23 平行四边形(原卷版)第1页
    中考数学一轮复习满分突破考点题型专练专题23 平行四边形(原卷版)第2页
    中考数学一轮复习满分突破考点题型专练专题23 平行四边形(原卷版)第3页
    中考数学一轮复习满分突破考点题型专练专题23 平行四边形(解析版)第1页
    中考数学一轮复习满分突破考点题型专练专题23 平行四边形(解析版)第2页
    中考数学一轮复习满分突破考点题型专练专题23 平行四边形(解析版)第3页
    还剩13页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习满分突破考点题型专练专题23 平行四边形(2份打包,原卷版+解析版)

    展开

    这是一份中考数学一轮复习满分突破考点题型专练专题23 平行四边形(2份打包,原卷版+解析版),文件包含中考数学一轮复习满分突破考点题型专练专题23平行四边形原卷版doc、中考数学一轮复习满分突破考点题型专练专题23平行四边形解析版doc等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。

    【知识要点】
    知识点一 平行四边形
    平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
    平行四边形的表示:用符号“▱”表示,平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”。
    平行四边形的性质:1)对边平行且相等; 2)对角相等、邻角互补; 3)对角线互相平分;
    4)平行四边形是中心对称图形,但不是轴对称图形,平行四边形的对角线的交点是平行四边形的对称中心。
    平行四边形的判定定理:
    1)边:①两组对边分别平行的四边形是平行四边形;
    ②两组对边分别相等的四边形是平行四边形;
    ③一组对边平行且相等的四边形是平行四边形.
    2)角:④两组对角分别相等的四边形是平行四边形;
    ⑤任意两组邻角分别互补的四边形是平行四边形.
    3)边与角:⑥一组对边平行,一组对角相等的四边形是平行四边形;
    4)对角线:⑦对角线互相平分的四边形是平行四边形.
    平行四边形的面积公式:面积=底×高
    平行线的性质:1)平行线间的距离都相等;
    2)两条平行线间的任何平行线段都相等;
    3)等底等高的平行四边形面积相等。
    考查题型一 添加一个条件成为平行四边形
    典例1.(2022·四川达州·统考中考真题)如图,在 SKIPIF 1 < 0 中,点D,E分别是 SKIPIF 1 < 0 , SKIPIF 1 < 0 边的中点,点F在 SKIPIF 1 < 0 的延长线上.添加一个条件,使得四边形 SKIPIF 1 < 0 为平行四边形,则这个条件可以是( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    【答案】B
    【分析】利用三角形中位线定理得到DE∥AC且DE= SKIPIF 1 < 0 AC,结合平行四边形的判定定理进行选择.
    【详解】解:∵在△ABC中,D,E分别是AB,BC的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥AC且DE= SKIPIF 1 < 0 AC,
    A、根据∠B=∠F不能判定CF∥AD,即不能判定四边形ADFC为平行四边形,故本选项错误.
    B、根据DE=EF可以判定DF=AC,由“一组对边平行且相等的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.
    C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.
    D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.
    故选:B.
    【点睛】本题主要考查了三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.
    变式1-1.(2021·黑龙江牡丹江·统考中考真题)如图,在四边形ABCD中, SKIPIF 1 < 0 ,请添加一个条件,使四边形ABCD成为平行四边形,你所添加的条件为___________ (写一个即可).
    【答案】AB SKIPIF 1 < 0 DC(答案不唯一)
    【分析】根据平行四边形的判定条件解答即可.
    【详解】解:∵AB=DC,
    再加AB SKIPIF 1 < 0 DC,
    ∴四边形ABCD是平行四边形,
    故答案为:AB SKIPIF 1 < 0 DC(答案不唯一)
    【点睛】本题考查平行四边形的判定,熟练掌握平行四边形的判定定理是解题的关键.
    变式1-2.(2020·黑龙江牡丹江·统考中考真题)如图,在四边形ABCD中,AD//BC,在不添加任何辅助线的情况下,请你添加一个条件____,使四边形ABCD是平行四边形(填一个即可).
    【答案】AD=BC(答案不唯一)
    【分析】根据平行四边形的判定方法添加一个条件即可.
    【详解】解:根据一组对边平行且相等的四边形是平行四边形,可以添加条件AD=BC,
    根据两组对边分别平行的四边形是平行四边形,可以添加条件AB∥DC,
    本题只需添加一个即可,
    故答案为:AD=BC(答案不唯一).
    【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
    变式1-3.(2020·黑龙江牡丹江·中考真题)如图,在四边形 SKIPIF 1 < 0 中,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 .请你添加一个条件______________,使 SKIPIF 1 < 0 .(填一种情况即可)
    【答案】AD=BC(答案不唯一)
    【分析】根据平行四边形的判定和性质添加条件证明AB=CD.
    【详解】解:添加的条件:AD=BC,理由是:
    ∵∠ACB=∠CAD,
    ∴AD∥BC,
    ∵AD=BC,
    ∴四边形ABCD是平行四边形,
    ∴AB=CD.
    【点睛】本题考查了平行四边形的判定和性质,掌握定理内容是解题的关键.
    变式1-4.(2021·湖南岳阳·统考中考真题)如图,在四边形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,垂足分别为点 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)请你只添加一个条件(不另加辅助线),使得四边形 SKIPIF 1 < 0 为平行四边形,你添加的条件是________;
    (2)添加了条件后,证明四边形 SKIPIF 1 < 0 为平行四边形.
    【答案】(1) SKIPIF 1 < 0 (答案不唯一,符合题意即可);(2)见解析
    【分析】(1)由题意可知 SKIPIF 1 < 0 ,要使得四边形 SKIPIF 1 < 0 为平行四边形,则使得 SKIPIF 1 < 0 即可,从而添加适当条件即可;
    (2)根据(1)的思路,利用平行四边形的定义证明即可.
    【详解】(1)显然,直接添加 SKIPIF 1 < 0 ,可根据定义得到结果,
    故答案为: SKIPIF 1 < 0 (答案不唯一,符合题意即可);
    (2)证明:∵ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 ,
    ∴四边形 SKIPIF 1 < 0 为平行四边形.
    【点睛】本题考查平行四边形的判定,掌握平行四边形的判定方法是解题关键.
    考查题型二 平行四边形的证明
    典例2.(2022·辽宁鞍山·统考中考真题)如图,在四边形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 与 SKIPIF 1 < 0 交于点 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,垂足分别为点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 .求证:四边形 SKIPIF 1 < 0 是平行四边形.
    【答案】见解析
    【分析】结合已知条件推知 SKIPIF 1 < 0 ;然后由全等三角形的判定定理 SKIPIF 1 < 0 证得 SKIPIF 1 < 0 ,则其对应边相等: SKIPIF 1 < 0 ;最后根据“对边平行且相等是四边形是平行四边形”证得结论.
    【详解】证明: SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 .
    SKIPIF 1 < 0 .
    在 SKIPIF 1 < 0 与 SKIPIF 1 < 0 中,
    SKIPIF 1 < 0 .
    SKIPIF 1 < 0 .
    SKIPIF 1 < 0 .
    SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是平行四边形.
    【点睛】本题主要考查了平行四边形的判定,三角形全等的判定及性质,解题的关键是掌握平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.
    变式2-1.(2022·广西河池·统考中考真题)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.
    (1)求证:∠ACB=∠DFE;
    (2)连接BF,CE,直接判断四边形BFEC的形状.
    【答案】(1)见解析
    (2)四边形BFEC是平行四边形
    【分析】(1)证△ABC≌△DEF(SSS),再由全等三角形的性质即可得出结论;
    (2)由(1)可知,∠ACB=∠DFE,则BC∥EF,再由平行四边形的判定即可得出结论.
    (1)
    证明:∵AF=CD,
    ∴AF + CF = CD + CF,
    即AC=DF,
    在△ABC和△DEF中,
    SKIPIF 1 < 0
    SKIPIF 1 < 0 △ABC≌△DEF(SSS)
    SKIPIF 1 < 0
    (2)
    如图,四边形BFEC是平行四边形,理由如下:
    由(1)可知,∠ACB=∠DFE,
    ∴BC SKIPIF 1 < 0 EF,
    又∶ BC = EF,
    SKIPIF 1 < 0 四边形BFEC是平行四边形.
    【点睛】本题考查了平行网边形的判定、全等三角形的判定与性质、平行线的判定等知识,熟练掌握平行四边形的判定方法,证明三角形全等是解题的关键.
    变式2-2.(2022·北京·统考中考真题)如图,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 交于点 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上, SKIPIF 1 < 0 .
    (1)求证:四边形 SKIPIF 1 < 0 是平行四边形;
    (2)若 SKIPIF 1 < 0 求证:四边形 SKIPIF 1 < 0 是菱形.
    【答案】(1)见解析
    (2)见解析
    【分析】(1)先根据四边形ABCD为平行四边形,得出 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,再根据 SKIPIF 1 < 0 ,得出 SKIPIF 1 < 0 ,即可证明结论;
    (2)先证明 SKIPIF 1 < 0 ,得出 SKIPIF 1 < 0 ,证明四边形ABCD为菱形,得出 SKIPIF 1 < 0 ,即可证明结论.
    【详解】(1)证明:∵四边形ABCD为平行四边形,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    即 SKIPIF 1 < 0 ,
    ∴四边形 SKIPIF 1 < 0 是平行四边形.
    (2)∵四边形ABCD为平行四边形,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴四边形ABCD为菱形,
    ∴ SKIPIF 1 < 0 ,
    即 SKIPIF 1 < 0 ,
    ∵四边形 SKIPIF 1 < 0 是平行四边形,
    ∴四边形 SKIPIF 1 < 0 是菱形.
    【点睛】本题主要考查了平行四边形的判定和性质,菱形的判定和性质,平行线的性质,熟练掌握菱形和平行四边形的判定方法,是解题的关键.
    变式2-3.(2022·广西贺州·统考中考真题)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且 SKIPIF 1 < 0 ,连接AF,CE,AC,EF,且AC与EF相交于点O.
    (1)求证:四边形AFCE是平行四边形;
    (2)若AC平分 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求四边形AFCE的面积.
    【答案】(1)详见解析;
    (2)24.
    【分析】(1)根据一组对边平行且相等的四边形是平行四边形解答;
    (2)由平行线的性质可得 SKIPIF 1 < 0 ,再根据角平分线的性质解得 SKIPIF 1 < 0 ,继而证明 SKIPIF 1 < 0 ,由此证明平行四边形AFCE是菱形,根据菱形的性质得到 SKIPIF 1 < 0 ,结合正切函数的定义解得 SKIPIF 1 < 0 ,最后根据三角形面积公式解答.
    【详解】(1)证明: SKIPIF 1 < 0 四边形ABCD是平行四边形
    SKIPIF 1 < 0
    SKIPIF 1 < 0
    SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
    SKIPIF 1 < 0 四边形AFCE是平行四边形.
    (2)解: SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 .
    SKIPIF 1 < 0 平分 SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 .
    SKIPIF 1 < 0 .
    SKIPIF 1 < 0 ,由(1)知四边形AFCE是平行四边形,
    SKIPIF 1 < 0 平行四边形AFCE是菱形.
    SKIPIF 1 < 0 ,
    在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 .
    SKIPIF 1 < 0
    SKIPIF 1 < 0 .
    【点睛】本题考查平行四边形的判定、菱形的判定与性质、平行线的性质、角平分线的性质、正切函数的定义等知识,是重要考点,难度一般,掌握相关知识是解题关键.
    变式2-4.(2022·江西·统考中考真题)图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知 SKIPIF 1 < 0 ,A,D,H,G四点在同一直线上,测得 SKIPIF 1 < 0 .(结果保留小数点后一位)
    (1)求证:四边形 SKIPIF 1 < 0 为平行四边形;
    (2)求雕塑的高(即点G到 SKIPIF 1 < 0 的距离).
    (参考数据: SKIPIF 1 < 0 )
    【答案】(1)见解析
    (2)雕塑的高为7.5m,详见解析
    【分析】(1)根据平行四边形的定义可得结论;
    (2)过点G作GP⊥AB于P,计算AG的长,利用 ∠A的正弦可得结论.
    (1)
    证明:∵ SKIPIF 1 < 0 ,
    ∴∠CDG=∠A,
    ∵∠FEC=∠A,
    ∴ ∠FEC=∠CDG,
    ∴EF∥DG,
    ∵FG∥CD,
    ∴四边形DEFG为平行四边形;
    (2)
    如图,过点G作GP⊥AB于P,
    ∵四边形DEFG为平行四边形,
    ∴DG=EF=6.2,
    ∵AD=1.6,
    ∴AG=DG+AD=6.2+1.6=7.8,
    在Rt△APG中,sinA= SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 =0.96,
    ∴PG=7.8×0.96=7.488≈7.5.
    答:雕塑的高为7.5m.
    【点睛】本题考查解直角三角形的应用,解题的关键是理解题意,正确作辅助线构建直角三角形解决问题.
    变式2-5.(2021·湖北鄂州·统考中考真题)如图,在 SKIPIF 1 < 0 中,点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 分别在边 SKIPIF 1 < 0 、 SKIPIF 1 < 0 上,且 SKIPIF 1 < 0 .
    (1)探究四边形 SKIPIF 1 < 0 的形状,并说明理由;
    (2)连接 SKIPIF 1 < 0 ,分别交 SKIPIF 1 < 0 、 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的长.
    【答案】(1)平行四边形,见解析;(2)16
    【分析】(1)利用平行四边形的判定定理,两组对边分别平行是平行四边形即可证明;
    (2)根据 SKIPIF 1 < 0 ,找到边与边的等量关系,再利用三角形相似,建立等式进行求解即可.
    【详解】(1)四边形 SKIPIF 1 < 0 为平行四边形.
    理由如下:
    ∵四边形 SKIPIF 1 < 0 为平行四边形
    ∴ SKIPIF 1 < 0
    ∵ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∵四边形 SKIPIF 1 < 0 为平行四边形
    ∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∵ SKIPIF 1 < 0
    ∴四边形 SKIPIF 1 < 0 为平行四边形
    (2)设 SKIPIF 1 < 0 ,∵ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0
    ∵四边形 SKIPIF 1 < 0 为平行四边形
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0
    ∵ SKIPIF 1 < 0
    SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∵ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 .
    【点睛】本题考查了平行四边形的判定定理、相似三角形的判定定理,解题的关键是:熟练掌握相关定理,能进行相关的证明.
    变式2-6.(2021·山东聊城·统考中考真题)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.
    (1)求证:四边形AECD是平行四边形;
    (2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.
    【答案】(1)见解析;(2)24
    【分析】(1)根据题意可证明 SKIPIF 1 < 0 ,得到OD=OE,从而根据“对角线互相平分的四边形为平行四边形”证明即可;
    (2)根据AB=BC,AO=CO,可证明BD为AC 的中垂线,从而推出四边形AECD为菱形,然后根据条件求出DE的长度,即可利用菱形的面积公式求解即可.
    【详解】(1)证明:在△AOE 和△COD中,
    SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 .
    ∴OD=OE.
    又∵AO=CO,
    ∴四边形AECD 是平行四边形.
    (2)∵AB=BC,AO=CO,
    ∴BO为AC的垂直平分线, SKIPIF 1 < 0 .
    ∴平行四边形 AECD是菱形.
    ∵AC=8,
    SKIPIF 1 < 0 .
    在 Rt△COD 中,CD=5,
    SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 ,
    ∴四边形 AECD 的面积为24.
    【点睛】本题考查平行四边形的判定,菱形的判定与面积计算,掌握基本的判定方法,熟练掌握菱形的面积计算公式是解题关键.
    考查题型三 利用平行线的性质求解
    典例3.(2022·广东·统考中考真题)如图,在 SKIPIF 1 < 0 中,一定正确的是( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    【答案】C
    【分析】根据平行四边形的性质:平行四边形的对边相等,然后对各选项进行判断即可.
    【详解】解:∵四边形ABCD是平行四边形,
    ∴AB=CD,AD=BC.
    故选:C.
    【点睛】本题考查了平行四边形的性质.解题的关键在于熟练掌握平行四边形的性质.
    变式3-1.(2022·福建·统考中考真题)如图,现有一把直尺和一块三角尺,其中 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 对应直尺的刻度为0,则四边形 SKIPIF 1 < 0 的面积是( )
    A.96B. SKIPIF 1 < 0 C.192D. SKIPIF 1 < 0
    【答案】B
    【分析】根据直尺与三角尺的夹角为60°,根据四边形 SKIPIF 1 < 0 的面积为 SKIPIF 1 < 0 ,即可求解.
    【详解】解:依题意 SKIPIF 1 < 0 为平行四边形,
    ∵ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,AB=8, SKIPIF 1 < 0 .
    SKIPIF 1 < 0
    ∴平行四边形 SKIPIF 1 < 0 的面积= SKIPIF 1 < 0 SKIPIF 1 < 0
    故选B
    【点睛】本题考查了解直角三角形,平移的性质,掌握平移的性质是解题的关键.
    变式3-2.(2022·四川乐山·统考中考真题)如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为E,过点B作BF⊥AC,垂足为F.若AB=6,AC=8,DE=4,则BF的长为( )
    A.4B.3C. SKIPIF 1 < 0 D.2
    【答案】B
    【分析】利用平行四边形ABCD的面积公式即可求解.
    【详解】解:∵DE⊥AB,BF⊥AC,
    ∴S平行四边形ABCD=DE×AB=2× SKIPIF 1 < 0 ×AC×BF,
    ∴4×6=2× SKIPIF 1 < 0 ×8×BF,
    ∴BF=3,
    故选:B.
    【点睛】本题考查了平行四边形的性质,利用平行四边形ABCD的面积公式求垂线段的长是解题的关键.
    变式3-3.(2022·湖南湘潭·统考中考真题)在 SKIPIF 1 < 0 中(如图),连接 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    【答案】C
    【分析】根据平行四边形的对边平行和两直线平行内错角相等的性质,再通过等量代换即可求解.
    【详解】解:∵四边形ABCD为平行四边形,
    ∴AB SKIPIF 1 < 0 CD
    ∴∠DCA=∠CAB,
    ∵ SKIPIF 1 < 0 ∠DCA+∠ACB, SKIPIF 1 < 0 , SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 40º+80º=120º,
    故选:C.
    【点睛】此题考查了平行四边形的性质和平行线的性质,解题的关键是熟记性质并熟练运用.
    变式3-4.(2022·内蒙古通辽·统考中考真题)如图,点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 内一点, SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴平行, SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴平行, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,若反比例函数 SKIPIF 1 < 0 的图像经过 SKIPIF 1 < 0 , SKIPIF 1 < 0 两点,则 SKIPIF 1 < 0 的值是( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    【答案】C
    【分析】过点C作CE⊥y轴于点E,延长BD交CE于点F,可证明△COE≌△ABE(AAS),则OE=BD= SKIPIF 1 < 0 ;由S△BDC= SKIPIF 1 < 0 •BD•CF= SKIPIF 1 < 0 可得CF=9,由∠BDC=120°,可知∠CDF=60°,所以DF=3 SKIPIF 1 < 0 ,所以点D的纵坐标为4 SKIPIF 1 < 0 ;设C(m, SKIPIF 1 < 0 ),D(m+9,4 SKIPIF 1 < 0 ),则k= SKIPIF 1 < 0 m=4 SKIPIF 1 < 0 (m+9),求出m的值即可求出k的值.
    【详解】解:过点C作CE⊥y轴于点E,延长BD交CE于点F,
    ∵四边形OABC为平行四边形,
    ∴AB SKIPIF 1 < 0 OC,AB=OC,
    ∴∠COE=∠ABD,
    ∵BD SKIPIF 1 < 0 y轴,
    ∴∠ADB=90°,
    ∴△COE≌△ABD(AAS),
    ∴OE=BD= SKIPIF 1 < 0 ,
    ∵S△BDC= SKIPIF 1 < 0 •BD•CF= SKIPIF 1 < 0 ,
    ∴CF=9,
    ∵∠BDC=120°,
    ∴∠CDF=60°,
    ∴DF=3 SKIPIF 1 < 0 .
    ∴点D的纵坐标为4 SKIPIF 1 < 0 ,
    设C(m, SKIPIF 1 < 0 ),D(m+9,4 SKIPIF 1 < 0 ),
    ∵反比例函数y= SKIPIF 1 < 0 (x<0)的图像经过C、D两点,
    ∴k= SKIPIF 1 < 0 m=4 SKIPIF 1 < 0 (m+9),
    ∴m=-12,
    ∴k=-12 SKIPIF 1 < 0 .
    故选:C.
    【点睛】本题主要考查反比例函数与几何的综合问题,坐标与图形,全等三角形的判定与性质,设出关键点的坐标,并根据几何关系消去参数的值是本题解题关键.
    变式3-5.(2022·黑龙江·统考中考真题)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数 SKIPIF 1 < 0 的图象上,顶点A在反比例函数 SKIPIF 1 < 0 的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是( )
    A.2B.1C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    【答案】D
    【分析】连接OA,设AB交y轴于点C,根据平行四边形的性质可得 SKIPIF 1 < 0 ,AB∥OD,再根据反比例函数比例系数的几何意义,即可求解.
    【详解】解:如图,连接OA,设AB交y轴于点C,
    ∵四边形OBAD是平行四边形,平行四边形OBAD的面积是5,
    ∴ SKIPIF 1 < 0 ,AB∥OD,
    ∴AB⊥y轴,
    ∵点B在反比例函数 SKIPIF 1 < 0 的图象上,顶点A在反比例函数 SKIPIF 1 < 0 的图象上,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    解得: SKIPIF 1 < 0 .
    故选:D.
    【点睛】本题主要考查了平行四边形的性质,反比例函数比例系数的几何意义,熟练掌握平行四边形的性质,反比例函数比例系数的几何意义是解题的关键.
    变式3-6.(2022·四川宜宾·统考中考真题)如图,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 是 SKIPIF 1 < 0 上的点, SKIPIF 1 < 0 ∥ SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ∥ SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,那么四边形 SKIPIF 1 < 0 的周长是( )
    A.5B.10C.15D.20
    【答案】B
    【分析】由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明□AFDE的周长等于AB+AC.
    【详解】∵DE∥AB,DF∥AC,
    则四边形AFDE是平行四边形,
    ∠B=∠EDC,∠FDB=∠C
    ∵AB=AC,
    ∴∠B=∠C,
    ∴∠B=∠FDB,∠C=∠EDF,
    ∴BF=FD,DE=EC,
    所以□AFDE的周长等于AB+AC=10.
    故答案为B
    【点睛】本题考查了平行四边形的性质、等腰三角形的性质、平行四边形的判定,熟练掌握这些知识点是本题解题的关键.
    变式3-7.(2021·天津·统考中考真题)如图, SKIPIF 1 < 0 的顶点A,B,C的坐标分别是 SKIPIF 1 < 0 ,则顶点D的坐标是( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    【答案】C
    【分析】根据平行四边形性质以及点的平移性质计算即可.
    【详解】解:∵四边形ABCD是平行四边形,
    点B的坐标为(-2,-2),点C的坐标为(2,-2),
    ∴点B到点C为水平向右移动4个单位长度,
    ∴A到D也应向右移动4个单位长度,
    ∵点A的坐标为(0,1),
    则点D的坐标为(4,1),
    故选:C.
    【点睛】本题主要考查平行四边形的性质,以及平移的相关知识点,熟知点的平移特点是解决本题的关键.
    变式3-8.(2021·贵州黔东南·统考中考真题)如图,抛物线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴只有一个公共点A(1,0),与 SKIPIF 1 < 0 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线 SKIPIF 1 < 0 ,则图中两个阴影部分的面积和为( )
    A.1B.2C.3D.4
    【答案】B
    【分析】连接AB,OM,根据二次函数图像的对称性把阴影图形的面积转化为平行四边形ABOM面积求解即可.
    【详解】设平移后的抛物线与对称轴所在的直线交于点M,连接AB,OM.
    由题意可知,AM=OB,
    ∵ SKIPIF 1 < 0
    ∴OA=1,OB=AM=2,
    ∵抛物线是轴对称图形,
    ∴图中两个阴影部分的面积和即为四边形ABOM的面积,
    ∵ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴四边形ABOM为平行四边形,
    ∴ SKIPIF 1 < 0 .
    故选:B.
    【点睛】此题考查了二次函数图像的对称性和阴影面积的求法,解题的关键是根据二次函数图像的对称性转化阴影图形的面积.
    变式3-9.(2021·湖北荆门·统考中考真题)如图,将一副三角板在平行四边形ABCD中作如下摆放,设 SKIPIF 1 < 0 ,那么 SKIPIF 1 < 0 ( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    【答案】C
    【分析】延长EG交AB于H,根据平行四边形与三角板的性质, SKIPIF 1 < 0 ,DC//AB,得到∠DEH=∠BHE=60°,再由平角的定义,计算出结果.
    【详解】解:如图,延长EG交AB于H,
    ∵∠BMF=∠BGE=90°,
    ∴MF//EH,
    ∴∠BFM=∠BHE,
    ∵ SKIPIF 1 < 0 ,
    ∴∠BFM=∠BHE=60°,
    ∵在平行四边形ABCD中,DC//AB,
    ∴∠DEH=∠BHE=60°,
    ∵∠GEN=45°,
    ∴ SKIPIF 1 < 0 ,
    故选:C.
    【点睛】本题主要考查平行四边形的性质与一副特殊三角形板的性质,关键在于作出辅助线,利用平行四边形的性质进行求解.
    变式3-10.(2022·安徽·统考中考真题)如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数 SKIPIF 1 < 0 的图象经过点C, SKIPIF 1 < 0 的图象经过点B.若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ________.
    【答案】3
    【分析】过点C作CD⊥OA于D,过点B作BE⊥x轴于E,先证四边形CDEB为矩形,得出CD=BE,再证Rt△COD≌Rt△BAE(HL),根据S平行四边形OCBA=4S△OCD=2,再求S△OBA= SKIPIF 1 < 0 即可.
    【详解】解:过点C作CD⊥OA于D,过点B作BE⊥x轴于E,
    ∴CD∥BE,
    ∵四边形ABCO为平行四边形,
    ∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,OC=AB,
    ∴四边形CDEB为平行四边形,
    ∵CD⊥OA,
    ∴四边形CDEB为矩形,
    ∴CD=BE,
    ∴在Rt△COD和Rt△BAE中,
    SKIPIF 1 < 0 ,
    ∴Rt△COD≌Rt△BAE(HL),
    ∴S△OCD=S△ABE,
    ∵OC=AC,CD⊥OA,
    ∴OD=AD,
    ∵反比例函数 SKIPIF 1 < 0 的图象经过点C,
    ∴S△OCD=S△CAD= SKIPIF 1 < 0 ,
    ∴S平行四边形OCBA=4S△OCD=2,
    ∴S△OBA= SKIPIF 1 < 0 ,
    ∴S△OBE=S△OBA+S△ABE= SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 .
    故答案为3.
    【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.
    变式3-11.(2022·江苏连云港·统考中考真题)如图,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 .利用尺规在 SKIPIF 1 < 0 、 SKIPIF 1 < 0 上分别截取 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,使 SKIPIF 1 < 0 ;分别以 SKIPIF 1 < 0 、 SKIPIF 1 < 0 为圆心,大于 SKIPIF 1 < 0 的长为半径作弧,两弧在 SKIPIF 1 < 0 内交于点 SKIPIF 1 < 0 ;作射线 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的长为_________.
    【答案】 SKIPIF 1 < 0
    【分析】如图所示,过点H作HM⊥BC于M,由作图方法可知,BH平分∠ABC,即可证明∠CBH=∠CHB,得到 SKIPIF 1 < 0 ,从而求出HM,CM的长,进而求出BM的长,即可利用勾股定理求出BH的长.
    【详解】解:如图所示,过点H作HM⊥BC于M,
    由作图方法可知,BH平分∠ABC,
    ∴∠ABH=∠CBH,
    ∵四边形ABCD是平行四边形,
    ∴ SKIPIF 1 < 0 ,
    ∴∠CHB=∠ABH,∠C=180°-∠ABC=30°,
    ∴∠CBH=∠CHB,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    故答案为: SKIPIF 1 < 0 .
    【点睛】本题主要考查了角平分线的尺规作图,平行四边形的性质,含30度角的直角三角形的性质,勾股定理,等腰三角形的性质与判定等等,正确求出CH的长是解题的关键.
    变式3-12.(2022·贵州毕节·统考中考真题)如图,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,点P为 SKIPIF 1 < 0 边上任意一点,连接 SKIPIF 1 < 0 ,以 SKIPIF 1 < 0 , SKIPIF 1 < 0 为邻边作平行四边形 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 长度的最小值为_________.
    【答案】 SKIPIF 1 < 0 ##2.4
    【分析】利用勾股定理得到BC边的长度,根据平行四边形的性质,得知OP最短即为PQ最短,利用垂线段最短得到点P的位置,再证明 SKIPIF 1 < 0 利用对应线段的比得到 SKIPIF 1 < 0 的长度,继而得到PQ的长度.
    【详解】解:∵ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∵四边形APCQ是平行四边形,
    ∴PO=QO,CO=AO,
    ∵PQ最短也就是PO最短,
    ∴过O作BC的垂线 SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴则PQ的最小值为 SKIPIF 1 < 0 ,
    故答案为: SKIPIF 1 < 0 .
    【点睛】考查线段的最小值问题,结合了平行四边形性质和相似三角形求线段长度,本题的关键是利用垂线段最短求解,学生要掌握转换线段的方法才能解出本题.
    变式3-13.(2022·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,将平行四边形OABC绕点O旋转90°后,点B的对应点 SKIPIF 1 < 0 坐标是______.
    【答案】 SKIPIF 1 < 0 或 SKIPIF 1 < 0
    【分析】根据旋转可得: BM = B1M1 = B2M2 = 3,∠AOA1 =∠AOA2 = 90°,可得B1和B2的坐标,即是B'的坐标.
    【详解】解:∵A(-1,2), OC= 4,
    ∴ C(4,0),B(3,2),M(0,2), BM = 3,
    AB//x轴,BM= 3.
    将平行四边形OABC绕点O分别顺时针、逆时针旋转90°后,
    由旋转得:OM=OM1=OM2=2,
    ∠AOA1=∠AOA2=90°
    BM=B1M1=B2M2=3,
    A1B1⊥x轴,A2B2⊥x轴,
    ∴B1和B2的坐标分别为: (-2,3), (2,-3),
    ∴B'即是图中的B1和B2,坐标就是, B' (-2, 3), (2,-3),
    故答案为: (-2,3)或 (2, -3).
    【点睛】本题考查了平行四边形的性质,坐标与图形的性质,旋转的性质,正确的识别图形是解题的关键.
    变式3-14.(2022·辽宁·统考中考真题)如图,直线y=2x+4与x轴交于点A,与y轴交于点B,点D为OB的中点,▱OCDE的顶点C在x轴上,顶点E在直线AB上,则▱OCDE的面积为_______.
    【答案】2
    【分析】根据一次函数解析式求出点 SKIPIF 1 < 0 的坐标,根据题意以及平行四边形的性质得出点 SKIPIF 1 < 0 的坐标,从而得出点 SKIPIF 1 < 0 的坐标,然后运用平行四边形面积计算公式计算即可.
    【详解】解:当x=0时,y=2×0+4=4,
    ∴点B的坐标为(0,4),OB=4.
    ∵点D为OB的中点,
    ∴OD= SKIPIF 1 < 0 OB= SKIPIF 1 < 0 ×4=2.
    ∵四边形OCDE为平行四边形,点C在x轴上,
    ∴DE∥x轴.
    当y=2时,2x+4=2,
    解得:x=﹣1,
    ∴点E的坐标为(﹣1,2),
    ∴DE=1,
    ∴OC=1,
    ∴▱OCDE的面积=OC•OD=1×2=2.
    故答案为:2.
    【点睛】本题考查了一次函数以及平行四边形的性质,根据题意得出图中各点的坐标是解本题的关键.
    考查题型四 利用平行线的性质证明
    典例4.(2022·广西桂林·统考中考真题)如图,在平行四边形ABCD中,点E和点F是对角线BD上的两点,且BF=DE.
    (1)求证:BE=DF;
    (2)求证: SKIPIF 1 < 0 ABE≌ SKIPIF 1 < 0 CDF.
    【答案】(1)见解析
    (2)见解析
    【分析】(1)根据 SKIPIF 1 < 0 ,得到 SKIPIF 1 < 0 ,得到 SKIPIF 1 < 0 ;
    (2)根据 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,得到 SKIPIF 1 < 0 ABE≌ SKIPIF 1 < 0 CDF.
    (1)
    ∵ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    (2)
    ∵四边形ABCD是平行四边形
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∵ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 ABE≌ SKIPIF 1 < 0 CDF(SAS).
    【点睛】本题考查平行四边形的性质,全等三角形的判定,解题的关键是熟练掌握平行四边形、全等三角形的相关知识.
    变式4-1.(2022·广西梧州·统考中考真题)如图,在 SKIPIF 1 < 0 中,E,G,H,F分别是 SKIPIF 1 < 0 上的点,且 SKIPIF 1 < 0 .求证: SKIPIF 1 < 0 .
    【答案】证明过程见解析
    【分析】先由四边形ABCD为平行四边形得到∠A=∠C,AB=CD,进而根据BE=DH得到AE=CH,最后再证明△AEF≌△CHG即可.
    【详解】证明:∵四边形ABCD为平行四边形,
    ∴∠A=∠C,AB=CD,
    又已知BE=DH,
    ∴AB-BE=CD-DH,
    ∴AE=CH,
    在△AEF和△CHG中
    SKIPIF 1 < 0 ,
    ∴△AEF≌△CHG(SAS),
    ∴EF=HG.
    【点睛】本题考察了平行四边形的性质和三角形全等的判定方法,属于基础题,熟练掌握平行四边形的性质是解决本题的关键.
    变式4-2.(2022·湖南永州·统考中考真题)如图, SKIPIF 1 < 0 是平行四边形 SKIPIF 1 < 0 的对角线, SKIPIF 1 < 0 平分 SKIPIF 1 < 0 ,交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .
    (1)请用尺规作 SKIPIF 1 < 0 的角平分线 SKIPIF 1 < 0 ,交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 (要求保留作图痕迹,不写作法,在确认答案后,请用黑色笔将作图痕迹再填涂一次);
    (2)根据图形猜想四边形 SKIPIF 1 < 0 为平行四边形,请将下面的证明过程补充完整.
    证明:∵四边形 SKIPIF 1 < 0 是平行四边形,
    ∴ SKIPIF 1 < 0
    ∵ SKIPIF 1 < 0 ______(两直线平行,内错角相等)
    又∵ SKIPIF 1 < 0 平分 SKIPIF 1 < 0 , SKIPIF 1 < 0 平分 SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 ______(______)(填推理的依据)
    又∵四边形 SKIPIF 1 < 0 是平行四边形
    ∴ SKIPIF 1 < 0
    ∴四边形 SKIPIF 1 < 0 为平行四边形(______)(填推理的依据).
    【答案】(1)详见解析
    (2)∠DBC;BF;内错角相等,两直线平行;两组对边分别平行的四边形是平行四边形
    【分析】(1)根据作角平分线的步骤作 SKIPIF 1 < 0 平分 SKIPIF 1 < 0 即可;
    (2)结合图形和已有步骤合理填写即可;
    (1)
    解:如图,根据角平分线的作图步骤,得到DE,即为所求;
    (2)
    证明:∵四边形 SKIPIF 1 < 0 是平行四边形,
    ∴ SKIPIF 1 < 0
    ∵ SKIPIF 1 < 0 SKIPIF 1 < 0 .(两直线平行,内错角相等).
    又∵ SKIPIF 1 < 0 平分 SKIPIF 1 < 0 , SKIPIF 1 < 0 平分 SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 .
    ∴ SKIPIF 1 < 0 SKIPIF 1 < 0 (内错角相等,两直线平行)(填推理的依据)
    又∵四边形 SKIPIF 1 < 0 是平行四边形.
    ∴ SKIPIF 1 < 0 ,
    ∴四边形 SKIPIF 1 < 0 为平行四边形(两组对边分别平行的四边形是平行四边形)(填推理的依据).
    【点睛】本题主要考查平行四边形的性质、角平分线的性质,掌握相关性质并灵活应用是解题的关键.
    变式4-3.(2022·内蒙古·中考真题)如图,在平行四边形 SKIPIF 1 < 0 中,点O是 SKIPIF 1 < 0 的中点,连接 SKIPIF 1 < 0 并延长交 SKIPIF 1 < 0 的延长线于点E,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    (1)求证:四边形 SKIPIF 1 < 0 是平行四边形;
    (2)若 SKIPIF 1 < 0 ,判断四边形 SKIPIF 1 < 0 的形状,并说明理由.
    【答案】(1)见解析
    (2)四边形 SKIPIF 1 < 0 是菱形.理由见解析
    【分析】(1)证△ABO≌△DEO(AAS),得OB=OE,再由平行四边形的判定即可得出结论;
    (2)由平行四边形的性质得AB=CD,再证AB=BD,然后由菱形的判定即可得出结论.
    【详解】(1)证明:∵四边形 SKIPIF 1 < 0 是平行四边形
    ∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∵点O是 SKIPIF 1 < 0 的中点
    ∴ SKIPIF 1 < 0
    在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中
    SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 (AAS)
    ∴ SKIPIF 1 < 0
    ∴四边形 SKIPIF 1 < 0 是平行四边形
    (2)四边形 SKIPIF 1 < 0 是菱形.
    理由:∵四边形 SKIPIF 1 < 0 是平行四边形
    ∴ SKIPIF 1 < 0
    ∵ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∵四边形 SKIPIF 1 < 0 是平行四边形
    ∴四边形 SKIPIF 1 < 0 是菱形
    【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,熟练掌握平行四边形的判定与性质是解题的关键.
    变式4-4.(2021·四川广元·统考中考真题)如图,在平行四边形 SKIPIF 1 < 0 中,E为 SKIPIF 1 < 0 边的中点,连接 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 的延长线和 SKIPIF 1 < 0 的延长线相交于点F.
    (1)求证: SKIPIF 1 < 0 ;
    (2)连接 SKIPIF 1 < 0 和 SKIPIF 1 < 0 相交于点为G,若 SKIPIF 1 < 0 的面积为2,求平行四边形 SKIPIF 1 < 0 的面积.
    【答案】(1)证明见解析;(2)24.
    【分析】(1)根据E是边DC的中点,可以得到 SKIPIF 1 < 0 ,再根据四边形ABCD是平行四边形,可以得到 SKIPIF 1 < 0 ,再根据 SKIPIF 1 < 0 ,即可得到 SKIPIF 1 < 0 ,则答案可证;
    (2)先证明 SKIPIF 1 < 0 ,根据相似三角形的性质得出 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,进而得出 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,则答案可解.
    【详解】(1)证明:∵四边形ABCD是平行四边形,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∵点E为DC的中点,
    ∴ SKIPIF 1 < 0 ,
    在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中
    SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ;
    (2)∵四边形ABCD是平行四边形,点E为DC的中点,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 的面积为2,
    ∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 .
    【点睛】本题考查平行四边形的性质、全等三角形的判定与性质,相似三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.
    考查题型五 利用平行线的性质与判定求解
    典例5.(2022·内蒙古赤峰·统考中考真题)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形 SKIPIF 1 < 0 ,其中一张纸条在转动过程中,下列结论一定成立的是( )
    A.四边形 SKIPIF 1 < 0 周长不变B. SKIPIF 1 < 0
    C.四边形 SKIPIF 1 < 0 面积不变D. SKIPIF 1 < 0
    【答案】D
    【分析】由平行四边形的性质进行判断,即可得到答案.
    【详解】解:由题意可知,
    ∵ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴四边形 SKIPIF 1 < 0 是平行四边形,
    ∴ SKIPIF 1 < 0 ;故D符合题意;
    随着一张纸条在转动过程中, SKIPIF 1 < 0 不一定等于 SKIPIF 1 < 0 ,四边形 SKIPIF 1 < 0 周长、面积都会改变;故A、B、C不符合题意;
    故选:D
    【点睛】本题考查了平行四边形的判定和性质,解题的关键是掌握平行四边形对边相等.
    变式5-1.(2022·内蒙古包头·中考真题)如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上, SKIPIF 1 < 0 与 SKIPIF 1 < 0 相交于点E,连接 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的周长比为( )
    A.1:4B.4:1C.1:2D.2:1
    【答案】D
    【分析】运用网格图中隐藏的条件证明四边形DCBM为平行四边形,接着证明 SKIPIF 1 < 0 ,最后利相似三角形周长的比等于相似比即可求出.
    【详解】如图:由题意可知, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    而 SKIPIF 1 < 0 ,
    ∴四边形DCBM为平行四边形,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 .
    故选:D.
    【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质及勾股定理,熟练掌握相关知识并正确计算是解题关键.
    变式5-2.(2021·黑龙江·统考中考真题)如图,平行四边形 SKIPIF 1 < 0 的对角线 SKIPIF 1 < 0 、 SKIPIF 1 < 0 相交于点E,点O为 SKIPIF 1 < 0 的中点,连接 SKIPIF 1 < 0 并延长,交 SKIPIF 1 < 0 的延长线于点D,交 SKIPIF 1 < 0 于点G,连接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,若平行四边形 SKIPIF 1 < 0 的面积为48,则 SKIPIF 1 < 0 的面积为( )
    A.5.5B.5C.4D.3
    【答案】C
    【分析】由题意易得 SKIPIF 1 < 0 ,进而可得 SKIPIF 1 < 0 ,则有 SKIPIF 1 < 0 ,然后根据相似比与面积比的关系可求解.
    【详解】解:∵四边形 SKIPIF 1 < 0 是平行四边形,
    ∴ SKIPIF 1 < 0 ,AE=EF, SKIPIF 1 < 0 ,
    ∵平行四边形 SKIPIF 1 < 0 的面积为48,
    ∴ SKIPIF 1 < 0 ,
    ∵点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 和 SKIPIF 1 < 0 同高不同底,
    ∴ SKIPIF 1 < 0 ,
    故选C.
    【点睛】本题主要考查相似三角形的性质与判定、平行四边形的性质及三角形中位线,熟练掌握相似三角形的性质与判定、平行四边形的性质及三角形中位线是解题的关键.
    变式5-3.(2021·江西·中考真题)如图,将 SKIPIF 1 < 0 沿对角线 SKIPIF 1 < 0 翻折,点 SKIPIF 1 < 0 落在点 SKIPIF 1 < 0 处, SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的周长为______.
    【答案】4a+2b
    【分析】根据题意并利用折叠的性质可得出∠ACE=∠ACB=2∠ECD,计算可得到∠ECD=20 SKIPIF 1 < 0 ,∠ACE=∠ACB=40 SKIPIF 1 < 0 ,利用三角形的外角性质得到∠CFD=∠D=80 SKIPIF 1 < 0 ,再等角对等边即可求解.
    【详解】解:由折叠的性质可得:∠ACE=∠ACB,
    ∵∠ACE=2∠ECD,
    ∴∠ACE=∠ACB=2∠ECD,
    ∵四边形ABCD是平行四边形,
    ∴∠FAC=∠FCA,∠B+∠BCD=180 SKIPIF 1 < 0 ,即∠B+∠ACE+∠ACB+∠ECD=180 SKIPIF 1 < 0 ,
    ∴∠ECD=20 SKIPIF 1 < 0 ,∠ACE=∠ACB=40 SKIPIF 1 < 0 =∠FAC,
    ∠CFD=∠FAC+∠FCA=80 SKIPIF 1 < 0 =∠B=∠D,
    ∴AF=CF=CD=a,即AD=a+b,
    则▱ABCD的周长为2AD+2CD=4a+2b,
    故答案为:4a+2b.
    【点睛】本题考查了平行四边形的性质,折叠的性质,等腰三角形的性质,正确的识别图形是解题的关键.
    变式5-4.(2022·四川内江·统考中考真题)如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC上的动点,EF∥BC,则AF+CE的最小值是 _____.
    【答案】10
    【分析】延长BC到G,使CG=EF,连接FG,证明四边形EFGC是平行四边形,得出CE=FG,得出当点A、F、G三点共线时,AF+CE的值最小,根据勾股定理求出AG即可.
    【详解】解:延长BC到G,使CG=EF,连接FG,
    ∵ SKIPIF 1 < 0 ,EF=CG,
    ∴四边形EFGC是平行四边形,
    ∴CE=FG,
    ∴AF+CE=AF+FG,
    ∴当点A、F、G三点共线时,AF+CE的值最小为AG,
    由勾股定理得,AG= SKIPIF 1 < 0 = SKIPIF 1 < 0 =10,
    ∴AF+CE的最小值为10,
    故答案为:10.
    【点睛】本题主要考查了勾股定理,平行四边形的判定和性质,根据题意作出辅助线,得出当A、F、G三点共线时,AF+CE的值最小,是解题的关键.
    变式5-5.(2021·山西·统考中考真题)综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,垂足为 SKIPIF 1 < 0 , SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,试猜想 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的数量关系,并加以证明;
    独立思考:(1)请解答老师提出的问题;
    实践探究:(2)希望小组受此问题的启发,将 SKIPIF 1 < 0 沿着 SKIPIF 1 < 0 ( SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点)所在直线折叠,如图②,点 SKIPIF 1 < 0 的对应点为 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 并延长交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,请判断 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的数量关系,并加以证明;
    问题解决:(3)智慧小组突发奇想,将 SKIPIF 1 < 0 沿过点 SKIPIF 1 < 0 的直线折叠,如图③,点A的对应点为 SKIPIF 1 < 0 ,使 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,折痕交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 ,交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .该小组提出一个问题:若此 SKIPIF 1 < 0 的面积为20,边长 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求图中阴影部分(四边形 SKIPIF 1 < 0 )的面积.请你思考此问题,直接写出结果.
    【答案】(1) SKIPIF 1 < 0 ;见解析;(2) SKIPIF 1 < 0 ,见解析;(3) SKIPIF 1 < 0 .
    【分析】(1)如图,分别延长 SKIPIF 1 < 0 , SKIPIF 1 < 0 相交于点P,根据平行四边形的性质可得 SKIPIF 1 < 0 ,根据平行线的性质可得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,利用AAS可证明△PDF≌△BCF,根据全等三角形的性质可得 SKIPIF 1 < 0 ,根据直角三角形斜边中线的性质可得 SKIPIF 1 < 0 ,即可得 SKIPIF 1 < 0 ;
    (2)根据折叠性质可得∠CFB=∠C′FB= SKIPIF 1 < 0 ∠CFC′,FC=FC′,可得FD=FC′,根据等腰三角形的性质可得∠FDC′=∠FC′D,根据三角形外角性质可得∠CFC′=∠FDC′+∠FC′D,即可得出∠C′FB=∠FC′D,可得DG//FB,即可证明四边形DGBF是平行四边形,可得DF=BG= SKIPIF 1 < 0 ,可得AG=BG;
    (3)如图,过点M作MQ⊥A′B于Q,根据平行四边形的面积可求出BH的长,根据折叠的性质可得A′B=AB,∠A=∠A′,∠ABM=∠MBH,根据 SKIPIF 1 < 0 可得A′B⊥AB,即可证明△MBQ是等腰直角三角形,可得MQ=BQ,根据平行四边形的性质可得∠A=∠C,即可得∠A′=∠C,进而可证明△A′NH∽△CBH,根据相似三角形的性质可得A′H、NH的长,根据NH//MQ可得△A′NH∽△A′MQ,根据相似三角形的性质可求出MQ的长,根据S阴=S△A′MB-S△A′NH即可得答案.
    【详解】(1) SKIPIF 1 < 0 .
    如图,分别延长 SKIPIF 1 < 0 , SKIPIF 1 < 0 相交于点P,
    ∵四边形 SKIPIF 1 < 0 是平行四边形,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,
    ∴ SKIPIF 1 < 0 ,
    在△PDF和△BCF中, SKIPIF 1 < 0 ,
    ∴△PDF≌△BCF,
    ∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,
    ∴ SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 .
    (2) SKIPIF 1 < 0 .
    ∵将 SKIPIF 1 < 0 沿着 SKIPIF 1 < 0 所在直线折叠,点 SKIPIF 1 < 0 的对应点为 SKIPIF 1 < 0 ,
    ∴∠CFB=∠C′FB= SKIPIF 1 < 0 ∠CFC′, SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴∠FDC′=∠FC′D,
    ∵ SKIPIF 1 < 0 =∠FDC′+∠FC′D,
    ∴ SKIPIF 1 < 0 ,
    ∴∠FC′D=∠C′FB,
    ∴ SKIPIF 1 < 0 ,
    ∵四边形 SKIPIF 1 < 0 为平行四边形,
    ∴ SKIPIF 1 < 0 ,DC=AB,
    ∴四边形 SKIPIF 1 < 0 为平行四边形,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 .
    (3)如图,过点M作MQ⊥A′B于Q,
    ∵ SKIPIF 1 < 0 的面积为20,边长 SKIPIF 1 < 0 , SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,
    ∴BH=50÷5=4,
    ∴CH= SKIPIF 1 < 0 ,A′H=A′B-BH=1,
    ∵将 SKIPIF 1 < 0 沿过点 SKIPIF 1 < 0 的直线折叠,点A的对应点为 SKIPIF 1 < 0 ,
    ∴A′B=AB,∠A=∠A′,∠ABM=∠MBH,
    ∵ SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,AB//CD,
    ∴ SKIPIF 1 < 0 ,
    ∴∠MBH=45°,
    ∴△MBQ是等腰直角三角形,
    ∴MQ=BQ,
    ∵四边形ABCD是平行四边形,
    ∴∠A=∠C,
    ∴∠A′=∠C,
    ∵∠A′HN=∠CHB,
    ∴△A′NH∽△CBH,
    ∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
    解得:NH=2,
    ∵ SKIPIF 1 < 0 ,MQ⊥A′B,
    ∴NH//MQ,
    ∴△A′NH∽△A′MQ,
    ∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
    解得:MQ= SKIPIF 1 < 0 ,
    ∴S阴=S△A′MB-S△A′NH= SKIPIF 1 < 0 A′B·MQ- SKIPIF 1 < 0 A′H·NH= SKIPIF 1 < 0 ×5× SKIPIF 1 < 0 - SKIPIF 1 < 0 ×1×2= SKIPIF 1 < 0 .
    【点睛】本题考查折叠的性质、平行四边形的判定与性质、全等三角形的判定与性质及相似三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.
    知识点二 三角形中位线
    三角形中位线概念:连接三角形两边中点的线段叫做三角形中位线。
    三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
    几何描述:
    ∵DE是△ABC的中位线
    ∴DE∥BC,DE=BC
    三角形中位线定理的作用:
    位置关系:可以证明两条直线平行。
    数量关系:可以证明线段的倍分关系。
    常用结论:任一个三角形都有三条中位线,由此有:
    结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
    结论2:三条中位线将原三角形分割成四个全等的三角形。
    结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
    结论4:三角形一条中线和与它相交的中位线互相平分。
    结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
    考查题型六 与三角形中位线有关的计算
    典例6.(2022·河南·统考中考真题)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为( )
    A.6B.12C.24D.48
    【答案】C
    【分析】由菱形的性质可得出BO=DO,AB=BC=CD=DA,再根据中位线的性质可得 SKIPIF 1 < 0 ,结合菱形的周长公式即可得出结论.
    【详解】解:∵四边形ABCD为菱形,
    ∴BO=DO,AB=BC=CD=DA,
    ∵OE=3,且点E为CD的中点,
    SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中位线,
    ∴BC=2OE=6.
    ∴菱形ABCD的周长为:4BC=4×6=24.
    故选:C.
    【点睛】本题考查了菱形的性质以及中位线的性质,解题的关键是求出BC=6.
    变式6-1.(2022·广东·统考中考真题)如图,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,点D,E分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 的中点,则 SKIPIF 1 < 0 ( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C.1D.2
    【答案】D
    【分析】利用中位线的性质:平行三角形的第三边且等于第三边的一半即可求解.
    【详解】∵D、E分别为AB、AC的中点,
    ∴DE为△ABC的中位线,
    ∴ SKIPIF 1 < 0 ,
    ∵BC=4,
    ∴DE=2,
    故选:D.
    【点睛】本题考查了中位线的判定与性质,掌握中位线的判定与性质是解答本题的关键.
    变式6-2.(2022·广东广州·统考中考真题)如图,正方形ABCD的面积为3,点E在边CD上, 且CE = 1,∠ABE的平分线交AD于点F,点M,N分别是BE,BF的中点,则MN的长为( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
    C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    【答案】D
    【分析】如图,连接EF,先证明 SKIPIF 1 < 0 再求解 SKIPIF 1 < 0 可得 SKIPIF 1 < 0 SKIPIF 1 < 0 再求解 SKIPIF 1 < 0 可得 SKIPIF 1 < 0 为等腰直角三角形,求解 SKIPIF 1 < 0 再利用三角形的中位线的性质可得答案.
    【详解】解:如图,连接EF,
    ∵正方形ABCD的面积为3,
    SKIPIF 1 < 0
    ∵ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    SKIPIF 1 < 0
    ∵ SKIPIF 1 < 0 平分 SKIPIF 1 < 0
    SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 为等腰直角三角形,
    SKIPIF 1 < 0
    ∵ SKIPIF 1 < 0 分别为 SKIPIF 1 < 0 的中点,
    SKIPIF 1 < 0
    故选D
    【点睛】本题考查的是正方形的性质,锐角三角函数的应用,等腰直角三角形的判定与性质,角平分线的定义,三角形的中位线的性质,求解 SKIPIF 1 < 0 是解本题的关键.
    变式6-3.(2021·海南·统考中考真题)如图,在菱形 SKIPIF 1 < 0 中,点 SKIPIF 1 < 0 分别是边 SKIPIF 1 < 0 的中点,连接 SKIPIF 1 < 0 .若菱形 SKIPIF 1 < 0 的面积为8,则 SKIPIF 1 < 0 的面积为( )
    A.2B.3C.4D.5
    【答案】B
    【分析】连接 SKIPIF 1 < 0 ,相交于点 SKIPIF 1 < 0 , SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,先根据菱形的性质可得 SKIPIF 1 < 0 ,再根据三角形中位线定理可得 SKIPIF 1 < 0 ,然后根据相似三角形的判定与性质可得 SKIPIF 1 < 0 ,从而可得 SKIPIF 1 < 0 ,最后利用三角形的面积公式即可得.
    【详解】解:如图,连接 SKIPIF 1 < 0 ,相交于点 SKIPIF 1 < 0 , SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是菱形,且它的面积为8,
    SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 点 SKIPIF 1 < 0 分别是边 SKIPIF 1 < 0 的中点,
    SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 ,
    则 SKIPIF 1 < 0 的面积为 SKIPIF 1 < 0 ,
    故选:B.
    【点睛】本题考查了菱形的性质、三角形中位线定理、相似三角形的判定与性质等知识点,熟练掌握菱形的性质是解题关键.
    变式6-4.(2021·湖南湘西·统考中考真题)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的度数是____.
    【答案】40°
    【分析】如图,由折叠的性质可得 SKIPIF 1 < 0 ,进而可得 SKIPIF 1 < 0 ,然后易得四边形 SKIPIF 1 < 0 是平行四边形,最后根据平行四边形的性质可求解.
    【详解】解:如图所示:
    ∵ SKIPIF 1 < 0 ,
    由折叠的性质可得 SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 ,
    ∴四边形 SKIPIF 1 < 0 是平行四边形,
    ∴ SKIPIF 1 < 0 ;
    故答案为40°.
    【点睛】本题主要考查平行四边形的性质与判定、平行线的性质及折叠的性质,熟练掌握平行四边形的性质与判定、平行线的性质及折叠的性质是解题的关键.
    变式6-5.(2022·上海·统考中考真题)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上, SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 _____.
    【答案】 SKIPIF 1 < 0 或 SKIPIF 1 < 0
    【分析】由题意可求出 SKIPIF 1 < 0 ,取AC中点E1,连接DE1,则DE1是△ABC的中位线,满足 SKIPIF 1 < 0 ,进而可求此时 SKIPIF 1 < 0 ,然后在AC上取一点E2,使得DE1=DE2,则 SKIPIF 1 < 0 ,证明△DE1E2是等边三角形,求出E1E2= SKIPIF 1 < 0 ,即可得到 SKIPIF 1 < 0 ,问题得解.
    【详解】解:∵D为AB中点,
    ∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
    取AC中点E1,连接DE1,则DE1是△ABC的中位线,此时DE1∥BC, SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    在AC上取一点E2,使得DE1=DE2,则 SKIPIF 1 < 0 ,
    ∵∠A=30°,∠B=90°,
    ∴∠C=60°,BC= SKIPIF 1 < 0 ,
    ∵DE1∥BC,
    ∴∠DE1E2=60°,
    ∴△DE1E2是等边三角形,
    ∴DE1=DE2=E1E2= SKIPIF 1 < 0 ,
    ∴E1E2= SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
    综上, SKIPIF 1 < 0 的值为: SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
    故答案为: SKIPIF 1 < 0 或 SKIPIF 1 < 0 .
    【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据 SKIPIF 1 < 0 进行分情况求解是解题的关键.
    变式6-6.(2022·江苏扬州·统考中考真题)“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片 SKIPIF 1 < 0 ,第1次折叠使点 SKIPIF 1 < 0 落在 SKIPIF 1 < 0 边上的点 SKIPIF 1 < 0 处,折痕 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ;第2次折叠使点 SKIPIF 1 < 0 落在点 SKIPIF 1 < 0 处,折痕 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 _____________.
    【答案】6
    【分析】根据第一次折叠的性质求得 SKIPIF 1 < 0 和 SKIPIF 1 < 0 ,由第二次折叠得到 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,进而得到 SKIPIF 1 < 0 ,易得MN是 SKIPIF 1 < 0 的中位线,最后由三角形的中位线求解.
    【详解】解:∵已知三角形纸片 SKIPIF 1 < 0 ,第1次折叠使点 SKIPIF 1 < 0 落在 SKIPIF 1 < 0 边上的点 SKIPIF 1 < 0 处,折痕 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    ∵第2次折叠使点 SKIPIF 1 < 0 落在点 SKIPIF 1 < 0 处,折痕 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 .
    ∵ SKIPIF 1 < 0 ,
    ∴MN是 SKIPIF 1 < 0 的中位线,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 .
    ∵ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 .
    故答案为:6.
    【点睛】本题主要考查了折叠的性质和三角形中位线的性质,理解折叠的性质,三角形的中位线性质是解答关键.
    变式6-7.(2021·江苏南京·统考中考真题)如图,在平面直角坐标系中, SKIPIF 1 < 0 的边 SKIPIF 1 < 0 的中点C,D的横坐标分别是1,4,则点B的横坐标是_______.
    【答案】6
    【分析】根据中点的性质,先求出点A的横坐标,再根据A、D求出B点横坐标.
    【详解】设点A的横坐标为a,点B的横坐标是b;
    SKIPIF 1 < 0 点的横坐标是0,C的横坐标是1 ,C,D是 SKIPIF 1 < 0 的中点
    SKIPIF 1 < 0 得 SKIPIF 1 < 0
    SKIPIF 1 < 0 得 SKIPIF 1 < 0
    SKIPIF 1 < 0 点B的横坐标是6.
    故答案为6.
    【点睛】本题考查了中点的性质,平面直角坐标系,三角形中线的性质,正确的使用中点坐标公式并正确的计算是解题的关键.
    变式6-8.(2022·湖南长沙·统考中考真题)如图,在 SKIPIF 1 < 0 中,对角线AC,BD相交于点O, SKIPIF 1 < 0 .
    (1)求证: SKIPIF 1 < 0 ;
    (2)若点E,F分别为AD,AO的中点,连接EF, SKIPIF 1 < 0 ,求BD的长及四边形ABCD的周长.
    【答案】(1)见解析
    (2) SKIPIF 1 < 0 ,四边形ABCD的周长为 SKIPIF 1 < 0
    【分析】(1)根据对角线互相垂直的平行四边形是菱形即可得证;
    (2)根据三角形中位线的性质可得 SKIPIF 1 < 0 ,进而可得 SKIPIF 1 < 0 的长, SKIPIF 1 < 0 中,勾股定理求得 SKIPIF 1 < 0 ,根据菱形的性质即可求解.
    【详解】(1)证明: SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是平行四边, SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是菱形,
    SKIPIF 1 < 0 SKIPIF 1 < 0 ;
    (2)解: SKIPIF 1 < 0 点E,F分别为AD,AO的中点,
    SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中位线,
    SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是菱形,
    SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 SKIPIF 1 < 0 ,
    在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 菱形形 SKIPIF 1 < 0 的周长为 SKIPIF 1 < 0 .
    【点睛】本题考查了菱形的性质与判定,三角形中位线的性质,勾股定理,掌握菱形的性质与判定是解题的关键.
    考查题型七 利用三角形中位线解决三角形面积问题
    典例7.(2021·四川内江·统考中考真题)如图,在边长为 SKIPIF 1 < 0 的等边 SKIPIF 1 < 0 中,分别取 SKIPIF 1 < 0 三边的中点 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,得△ SKIPIF 1 < 0 ;再分别取△ SKIPIF 1 < 0 三边的中点 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,得△ SKIPIF 1 < 0 ;这样依次下去 SKIPIF 1 < 0 ,经过第2021次操作后得△ SKIPIF 1 < 0 ,则△ SKIPIF 1 < 0 的面积为( )
    A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
    【答案】D
    【分析】先根据三角形中位线定理计算,再总结规律,根据规律解答即可得.
    【详解】解: SKIPIF 1 < 0 点 SKIPIF 1 < 0 , SKIPIF 1 < 0 分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 的中点,
    SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 点 SKIPIF 1 < 0 , SKIPIF 1 < 0 分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 的中点,
    SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 ,
    SKIPIF 1 < 0
    SKIPIF 1 < 0 ,
    SKIPIF 1 < 0
    SKIPIF 1 < 0 △ SKIPIF 1 < 0 的面积 SKIPIF 1 < 0 ,
    故选D.
    【点睛】本题考查了三角形中位线定理,解题的关键是掌握三角形中位线定理.
    变式7-1.(2021·四川遂宁·统考中考真题)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为( )
    A.12cm2B.9cm2C.6cm2D.3cm2
    【答案】B
    【分析】由三角形的中位线定理可得DE= SKIPIF 1 < 0 BC,DE∥BC,可证△ADE∽△ABC,利用相似三角形的性质,即可求解.
    【详解】解:∵点D,E分别是边AB,AC的中点,
    ∴DE= SKIPIF 1 < 0 BC,DE∥BC,
    ∴△ADE∽△ABC,
    ∴ SKIPIF 1 < 0 ,
    ∵S△ADE=3,
    ∴S△ABC=12,
    ∴四边形BDEC的面积=12-3=9(cm2),
    故选:B.
    【点睛】本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键.
    变式7-2.(2021·黑龙江·统考中考真题)如图,平行四边形 SKIPIF 1 < 0 的对角线 SKIPIF 1 < 0 相交于点 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,连接 SKIPIF 1 < 0 并延长,交 SKIPIF 1 < 0 的延长线于点 SKIPIF 1 < 0 ,交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,若平行四边形 SKIPIF 1 < 0 的面积为48,则 SKIPIF 1 < 0 的面积为( )
    A.4B.5C.2D.3
    【答案】C
    【分析】由题意易得 SKIPIF 1 < 0 ,进而可得 SKIPIF 1 < 0 ,则有 SKIPIF 1 < 0 ,然后根据相似比与面积比的关系可求解.
    【详解】解:∵四边形 SKIPIF 1 < 0 是平行四边形,
    ∴ SKIPIF 1 < 0 ,AE=EF, SKIPIF 1 < 0 ,
    ∵平行四边形 SKIPIF 1 < 0 的面积为48,
    ∴ SKIPIF 1 < 0 ,
    ∵点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∵ SKIPIF 1 < 0 和 SKIPIF 1 < 0 同高不同底,
    ∴ SKIPIF 1 < 0 ,
    故选C.
    【点睛】本题主要考查相似三角形的性质与判定、平行四边形的性质及三角形中位线,熟练掌握相似三角形的性质与判定、平行四边形的性质及三角形中位线是解题的关键.
    变式7-4.(2020·四川内江·统考中考真题)如图,在 SKIPIF 1 < 0 中,D、E分别是AB和AC的中点, SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
    A.30B.25C.22.5D.20
    【答案】D
    【分析】首先判断出△ADE∽△ABC,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC的面积.
    【详解】解:根据题意,点D和点E分别是AB和AC的中点,则DE∥BC且DE= SKIPIF 1 < 0 BC,故可以判断出△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方,可知 SKIPIF 1 < 0 : SKIPIF 1 < 0 =1:4,则 SKIPIF 1 < 0 : SKIPIF 1 < 0 =3:4,题中已知 SKIPIF 1 < 0 ,故可得 SKIPIF 1 < 0 =5, SKIPIF 1 < 0 =20
    故本题选择D
    【点睛】本题主要考查相似三角形的判定与性质,解答本题的关键是得出DE是中位线,从而判断△ADE∽△ABC,然后掌握相似三角形的面积比等于相似比的平方即可求解本题.
    变式7-5.(2020·辽宁·统考中考真题)如图,四边形 SKIPIF 1 < 0 是矩形,延长 SKIPIF 1 < 0 到点 SKIPIF 1 < 0 ,使 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中点,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,得到 SKIPIF 1 < 0 ;点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中点,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,得到 SKIPIF 1 < 0 ;点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中点,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,得到 SKIPIF 1 < 0 ;…;按照此规律继续进行下去,若矩形 SKIPIF 1 < 0 的面积等于2,则 SKIPIF 1 < 0 的面积为_________.(用含正整数 SKIPIF 1 < 0 的式子表示)
    【答案】 SKIPIF 1 < 0
    【分析】先计算出 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的面积,然后再根据其面积的表达式找出其一般规律进而求解.
    【详解】解:∵ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 面积是矩形ABCD面积的一半,∴梯形BCDE的面积为 SKIPIF 1 < 0 ,
    ∵点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中点,∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 ,
    SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∵点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中点,由中线平分所在三角形的面积可知,
    ∴ SKIPIF 1 < 0 ,
    且 SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0
    ∴ SKIPIF 1 < 0 ,
    同理可以计算出:
    SKIPIF 1 < 0 ,
    且 SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 ,
    故 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的面积分别为: SKIPIF 1 < 0 ,
    观察规律,其分母分别为2,4,8,符合 SKIPIF 1 < 0 ,分子规律为 SKIPIF 1 < 0 ,
    ∴ SKIPIF 1 < 0 的面积为 SKIPIF 1 < 0 .
    故答案为: SKIPIF 1 < 0 .
    【点睛】本题考查了三角形的中线的性质,三角形面积公式,矩形的性质等,本题的关键是能求出前面三个三角形的面积表达式,进而找出规律求解.

    相关试卷

    中考数学一轮复习满分突破考点题型专练专题24 特殊的平行四边形-矩形(2份打包,原卷版+解析版):

    这是一份中考数学一轮复习满分突破考点题型专练专题24 特殊的平行四边形-矩形(2份打包,原卷版+解析版),文件包含中考数学一轮复习满分突破考点题型专练专题24特殊的平行四边形-矩形原卷版doc、中考数学一轮复习满分突破考点题型专练专题24特殊的平行四边形-矩形解析版doc等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。

    中考数学一轮复习满分突破考点题型专练专题21 勾股定理(2份打包,原卷版+解析版):

    这是一份中考数学一轮复习满分突破考点题型专练专题21 勾股定理(2份打包,原卷版+解析版),文件包含中考数学一轮复习满分突破考点题型专练专题21勾股定理原卷版doc、中考数学一轮复习满分突破考点题型专练专题21勾股定理解析版doc等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。

    中考数学一轮复习满分突破考点题型专练专题16 图形的初步认识(2份打包,原卷版+解析版):

    这是一份中考数学一轮复习满分突破考点题型专练专题16 图形的初步认识(2份打包,原卷版+解析版),文件包含中考数学一轮复习满分突破考点题型专练专题16图形的初步认识原卷版doc、中考数学一轮复习满分突破考点题型专练专题16图形的初步认识解析版doc等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map