中考数学一轮复习满分突破考点题型专练专题30 正多边形与圆、与弧长公式、扇形面积、圆锥侧面积有关的计算(2份打包,原卷版+解析版)
展开【知识要点】
正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形。
正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。
正多边形的半径:正多边形外接圆的半径叫做正多边形的半径。
正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。
正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距。
【解题思路】
1.正边形半径、边心距和构成直角三角形。
2.已知其中两个值,第三个值可以借助勾股定理求解。
正多边形的对称性:
1)正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2)一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形.对称中心就是这个正多边的中心。
【小结】正n变形的内角为,外角为,中心角为 内角和为( n-2 )×180°。
【扩展】正多边形常见边心距与边长的比值
第一种 正三角形 在⊙O中△ABC是正三角形,在Rt△BOD中,OD:BD:OB=1:: 2 (图一)
变式 正三角形内切圆与外切圆半径比为1:2 (图二)
第二种 正方形 在⊙O中四边形是正方形,在Rt△OAE中,OE:AE:OE=1:1: (图三)
变式 正方形内切圆与外切圆半径比为1: (图四)
第三种 正六变形 在⊙O中六边形是正六边形,在Rt△OAB,AB:OB:OA=1:: 2 (图五)
图一 图二 图三 图四 图五
设的半径为,圆心角所对弧长为,
弧长公式: (弧长的长度和圆心角大小和半径的取值有关)
扇形面积公式:
圆锥的侧面积公式: (其中l是圆锥的母线长,r是圆锥的底面半径)
母线的概念:连接圆锥顶点和底面圆周任意一点的线段。
圆锥体表面积公式:(为母线)
【备注】1)圆锥的表面积=扇形面积=底面圆面积
2)扇形的弧长为圆锥的底面圆周长2πR
求阴影部分面积的几种常见方法:1)公式法;2)割补法;3)拼凑法;4)等积变形构造方程法;5)去重法。
考查题型一 与正多边形中心角有关的计算
典例1.(2022·山东青岛·统考中考真题)如图,正六边形内接于,点M在上,则的度数为( )
A.B.C.D.
变式1-1.(2021·内蒙古呼伦贝尔·统考中考真题)一个正多边形的中心角为,这个正多边形的边数是( )
A.8B.12C.3D.6
变式1-2.(2022·四川成都·统考中考真题)如图,正六边形内接于⊙,若⊙的周长等于,则正六边形的边长为( )
A. SKIPIF 1 < 0 B.C.3D.
变式1-3.(2022·甘肃武威·统考中考真题)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形,若对角线的长约为8mm,则正六边形的边长为( )
A.2mmB.C.D.4mm
变式1-4.(2022·黑龙江绥化·统考中考真题)如图,正六边形和正五边形内接于,且有公共顶点A,则的度数为______度.
变式1-5.(2022·吉林·统考中考真题)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角 SKIPIF 1 < 0 后能够与它本身重合,则角可以为__________度.(写出一个即可)
变式1-6.(2020·黑龙江绥化·中考真题)如图,正五边形内接于,点P为上一点(点P与点D,点E不重合),连接、,,垂足为G,等于________度.
变式1-7.(2020·湖南株洲·中考真题)一个蜘蛛网如图所示,若多边形ABCDEFGHI为正九边形,其中心点为点O,点M、N分别在射线OA、OC上,则________度.
考查题型二 正多边形与圆
典例2.(2022·四川雅安·统考中考真题)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为( )
A.3 SKIPIF 1 < 0 B.C.D.3
变式2-1.(2022·四川绵阳·统考中考真题)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫,如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,-3).则顶点C的坐标为( )
A.B.C. D.
变式2-2.(2022·四川内江·统考中考真题)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为( )
A.4,B.3 SKIPIF 1 < 0 ,πC.2 SKIPIF 1 < 0 ,D.3 SKIPIF 1 < 0 ,2π
变式2-3.(2022·湖北黄石·统考中考真题)我国魏晋时期的数学家刘徽首创割圆术:割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣",即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,…….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长,则.再利用圆的内接正十二边形来计算圆周率则圆周率约为( )
A.B.C.D.
变式2-4.(2021·四川德阳·统考中考真题)如图,边长为1的正六边形ABCDEF放置于平面直角坐标系中,边AB在x轴正半轴上,顶点F在y轴正半轴上,将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,那么经过第2025次旋转后,顶点D的坐标为( )
A.(,)B.(,)C.(, SKIPIF 1 < 0 )D.(,)
变式2-5.(2021·内蒙古呼和浩特·统考中考真题)如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计的值,下面d及的值都正确的是( )
A.,B.,
C.,D.,
变式2-6.(2022·浙江丽水·统考中考真题)三个能够重合的正六边形的位置如图.已知B点的坐标是,则A点的坐标是___________.
变式2-7.(2022·江苏宿迁·统考中考真题)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是_____.
变式2-8.(2022·吉林长春·统考中考真题)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形和等边三角形组合而成,它们重叠部分的图形为正六边形.若 SKIPIF 1 < 0 厘米,则这个正六边形的周长为_________厘米.
变式2-9.(2021·内蒙古赤峰·统考中考真题)如图,在拧开一个边长为a的正六角形螺帽时,扳手张开的开口b=20mm,则边长a为_________mm.
变式2-10.(2021·上海·统考中考真题)六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________.
变式2-11.(2021·广西梧州·统考中考真题)如图,正六边形ABCDEF的周长是24cm,连接这个六边形的各边中点G,H,K,L,M,N,则六边形GHKLMN的周长是 ___cm.
变式2-12.(2022·浙江金华·统考中考真题)如图1,正五边形内接于⊙,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径 SKIPIF 1 < 0 ;②以F为圆心,为半径作圆弧,与⊙交于点M,N;③连接.
(1)求的度数.
(2)是正三角形吗?请说明理由.
(3)从点A开始,以长为半径,在⊙上依次截取点,再依次连接这些分点,得到正n边形,求n的值.
变式2-13.(2021·湖北随州·统考中考真题)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.
(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;
(2)①如图1,是边长为的正内任意一点,点为的中心,设点到各边距离分别为,,,连接,,,由等面积法,易知,可得_____;(结果用含的式子表示)
②如图2,是边长为的正五边形内任意一点,设点到五边形各边距离分别为,,,,,参照①的探索过程,试用含的式子表示的值.(参考数据:,)
(3)①如图3,已知的半径为2,点为外一点,,切于点,弦,连接,则图中阴影部分的面积为______;(结果保留)
②如图4,现有六边形花坛,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形,其中点在 SKIPIF 1 < 0 的延长线上,且要保证改造前后花坛的面积不变,试确定点的位置,并说明理由.
考查题型三 与弧长公式有关的计算
典例3.(2022·辽宁丹东·统考中考真题)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则 的长为( )
A.6πB.2πC.πD.π
变式3-1.(2022·浙江丽水·统考中考真题)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为,高为,则改建后门洞的圆弧长是( )
A.B.C.D.
变式3-2.(2022·河北·统考中考真题)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是( )
A.cmB.cmC. SKIPIF 1 < 0 cmD.cm
变式3-3.(2022·甘肃武威·统考中考真题)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点是这段弧所在圆的圆心,半径,圆心角,则这段弯路()的长度为( )
A.B.C.D.
变式3-4(2022·黑龙江牡丹江·统考中考真题)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )
A.90°B.100°C.120°D.150°
变式3-5.(2022·广东广州·统考中考真题)如图,在△ABC中,AB=AC,点O在边AC上,以O为圆心,4为半径的圆恰好过点C,且与边AB相切于点D,交BC于点E,则劣弧的长是________(结果保留)
变式3-6.(2022·江苏徐州·统考中考真题)如图,圆锥的母线AB=6,底面半径CB=2,则其侧面展开图扇形的圆心角α=_______.
变式3-7.(2022·浙江绍兴·统考中考真题)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连接OD,AD.
(1)若∠ACB=20°,求的长(结果保留).
(2)求证:AD平分∠BDO.
考查题型四 与扇形面积有关的计算
典例4.(2022·甘肃兰州·统考中考真题)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角形成的扇面,若,,则阴影部分的面积为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
变式4-1.(2022·江苏苏州·统考中考真题)如图,在的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是( )
A.B.C.D.
变式4-2.(2022·江苏连云港·统考中考真题)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )
A.B. SKIPIF 1 < 0 C.D.
变式4-3.(2022·广西河池·统考中考真题)如图,在Rt△ABC中,, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,将绕点B顺时针旋转90°得到.在此旋转过程中所扫过的面积为( )
A.25π+24B.5π+24C.25πD.5π
变式4-4.(2022·贵州安顺·统考中考真题)如图,边长为的正方形内接于,,分别与相切于点和点,的延长线与的延长线交于点,则图中阴影部分的面积为( )
A.B.C.D.
变式4-5.(2022·贵州遵义·统考中考真题)如图,在正方形中,和交于点,过点的直线交于点(不与,重合),交于点.以点为圆心,为半径的圆交直线于点,.若,则图中阴影部分的面积为( )
A.B.C.D.
变式4-6.(2022·贵州黔西·统考中考真题)如图,边长为4的正方形ABCD的对角线交于点O,以OC为半径的扇形的圆心角.则图中阴影部分面积是_____.
变式4-7.(2022·山东聊城·统考中考真题)若一个圆锥体的底面积是其表面积的,则其侧面展开图圆心角的度数为______________.
变式4-8(2022·山东东营·统考中考真题)如图,为的直径,点C为上一点,于点D,平分.
(1)求证:直线是的切线;
(2)若的半径为2,求图中阴影部分的面积.
变式4-9.(2022·江苏淮安·统考中考真题)如图,是的内接三角形,,经过圆心交于点,连接,.
(1)判断直线与的位置关系,并说明理由;
(2)若,求图中阴影部分的面积.
变式4-10.(2022·湖南益阳·统考中考真题)如图,C是圆O被直径AB分成的半圆上一点,过点C的圆O的切线交AB的延长线于点P,连接CA,CO,CB.
(1)求证:∠ACO=∠BCP;
(2)若∠ABC=2∠BCP,求∠P的度数;
(3)在(2)的条件下,若AB=4,求图中阴影部分的面积(结果保留π和根号).
考查题型五 与圆锥侧面积有关的计算
典例5.(2022·山东济宁·统考中考真题)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是( )
A.96πcm2B.48πcm2C.33πcm2D.24πcm2
变式5-1(2022·山东东营·统考中考真题)用一张半圆形铁皮,围成一个底面半径为的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为( )
A.B.C.D.
变式5-2.(2022·广西贺州·统考中考真题)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是,高是;圆柱体底面半径是,液体高是 SKIPIF 1 < 0 .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )
A.B.C.D.
变式5-3.(2022·四川广安·统考中考真题)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是( )
A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2
C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm2
变式5-4.(2022·四川绵阳·统考中考真题)如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm).电镀时,如果每平方米用锌0.1千克,电镀1000个这样的锚标浮筒,需要多少千克锌?(π的值取3.14)( )
A.282.6B.282600000C.357.96D.357960000
变式5-5.(2022·内蒙古呼和浩特·统考中考真题)如图,从一个边长是的正五边形纸片上剪出一个扇形,这个扇形的面积为_______(用含的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为_______.
变式5-6.(2021·内蒙古呼和浩特·统考中考真题)已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为__________.(用含π的代数式表示),圆心角为__________度.
变式5-7.(2022·山东潍坊·中考真题)在数学实验课上,小莹将含角的直角三角尺分别以两个直角边为轴旋转一周,得到甲、乙两个圆锥,并用作图软件Gegebra画出如下示意图
小亮观察后说:“甲、乙圆锥的侧面都是由三角尺的斜边旋转得到,所以它们的侧面积相等.”
你认同小亮的说法吗?请说明理由.
中考数学一轮复习满分突破考点题型专练专题28 圆(2份打包,原卷版+解析版): 这是一份中考数学一轮复习满分突破考点题型专练专题28 圆(2份打包,原卷版+解析版),文件包含中考数学一轮复习满分突破考点题型专练专题28圆原卷版doc、中考数学一轮复习满分突破考点题型专练专题28圆解析版doc等2份试卷配套教学资源,其中试卷共75页, 欢迎下载使用。
中考数学一轮复习满分突破考点题型专练专题21 勾股定理(2份打包,原卷版+解析版): 这是一份中考数学一轮复习满分突破考点题型专练专题21 勾股定理(2份打包,原卷版+解析版),文件包含中考数学一轮复习满分突破考点题型专练专题21勾股定理原卷版doc、中考数学一轮复习满分突破考点题型专练专题21勾股定理解析版doc等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
中考数学一轮复习满分突破考点题型专练专题10 分式方程(2份打包,原卷版+解析版): 这是一份中考数学一轮复习满分突破考点题型专练专题10 分式方程(2份打包,原卷版+解析版),文件包含中考数学一轮复习满分突破考点题型专练专题10分式方程原卷版doc、中考数学一轮复习满分突破考点题型专练专题10分式方程解析版doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。