所属成套资源:最新七年级下册--2023-2024学年七年级数学下册单元复习过过过(苏科版)
第十一章 一元一次不等式 【过关测试提优】-2023-2024学年七年级数学下册单元复习过过过(苏科版)
展开
这是一份第十一章 一元一次不等式 【过关测试提优】-2023-2024学年七年级数学下册单元复习过过过(苏科版),文件包含第十一章一元一次不等式过关测试提优-2023-2024学年七年级数学下册单元复习过过过苏科版原卷版docx、第十一章一元一次不等式过关测试提优-2023-2024学年七年级数学下册单元复习过过过苏科版解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
第十一章 一元一次不等式(提优)一.选择题(共8小题)1.若a<b,则下列结论不一定成立的是( )A.a﹣1<b﹣1 B.2a<2b C.a3<b3 D.a2<b22.小明一家6人去公园游玩,小明爸爸给了小明100元买午饭,有12元套餐和18元套餐可供选择,若至少有2个人要吃18元套餐,请问小明购买的方案有( )A.2种 B.3种 C.4种 D.5种3.若关于x的不等式组2x+3>12x−a≤0恰有3个整数解,则实数a的取值范围是( )A.7<a<8 B.7<a≤8 C.7≤a<8 D.7≤a≤84.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答,要使总分不低于60分,那么小明至少答对的题数是( )A.15道 B.14道 C.13道 D.12道5.已知x=4是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是( )A.x>11 B.x<11 C.x>7 D.x<76.一元一次不等式组2x>x−1x+12≤2的解集在数轴上表示为( )A. B. C. D.7.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x的取值范围是( )A.2<x≤4 B.2≤x<4 C.2<x<4 D.2≤x≤48.已知关于x的不等式组3x−1<4(x−1)x<m无解,则m的取值范围是( )A.m≤3 B.m>3 C.m<3 D.m≥3二.填空题(共8小题)9.不等式﹣2x>10的解集是 .10.若关于x的不等式(2n﹣3)x<5的解集为x>﹣1,则n= .11.已知关于x、y的方程组x−y=2kx+3y=1−5k的解满足不等式﹣1≤x+y<5,则实数k的取值范围为 .12.已知实数x、y满足2x﹣3y=4,且x>﹣1,y≤2,设k=x﹣y,则k的取值范围是 .13.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有 块.14.若关于x的不等式组x−m<07−2x≤1的整数解有4个,则m的取值范围是 .15.已知x=2是不等式ax﹣3a+2≥0的解,且x=1不是这个不等式的解,则实数a的取值范围是 .16.对于x,符号[x]表示不大于x的最大整数.如:[3.14]=3,[﹣7.59]=﹣8,则满足关系式[3x+77]=4的x的整数值有 个.三.解答题(共9小题)17.解一元一次不等式组:3x+1<2(x+2)−x3≤5x3+2.18.解不等式组:x−3(x−2)≥4x−15<x+12,并写出它的整数解.19.已知关于x的不等式组x>−1x<4x≤1−k.(1)当k=﹣2时,求不等式组的解集;(2)若不等式组的解集是﹣1<x<4,求k的范围;(3)若不等式组有3个整数解,求k的范围.20.端午节之前,小明准备买粽子过节,若在当地某超市购买2盒甲品牌粽子和3盒乙品牌粽子需支付380元,而在某团购群购买5盒甲品牌粽子和4盒乙品牌粽子需支付520元.对比发现,甲品牌粽子每盒的团购价相当于超市价的八折,乙品牌粽子每盒的团购价相当于超市价的七五折.(1)甲、乙两种品牌粽子每盒的超市价分别是多少元?(2)小明打算在团购群购买这两种品牌的粽子,其中乙品牌粽子比甲品牌粽子多3盒,总花费不超过1200元,问小明最多能买多少盒甲品牌粽子?21.商店购进每个10元的某种商品共200个,邮寄费和优惠率如下表:(1)如果商店分两次购进,总计金额1890元,两次邮购商品各多少个?(列方程组解答)(2)如果商店一次性购进该批商品,然后再售出.已知该商品每个标价13.5元出售,若商店每个以a折出售且利润不低于5%,那么最低可以打几折出售这批商品?22.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3}=−1+2+33=43,min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;M{﹣1,2,a}=−1+2+a3=a+13,min{﹣1,2,a}=a(a≤−1)−1(a>−1).(1)请填空:max{c﹣1,c,c+1}= ;若m<0,n>0,min{3m,(n+3)m,﹣mn}= ;(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(3)若M{2,x+1,2x}=min{2,x+1,2x},求x的值.24.阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:∵x﹣y=2,又∵x>1,∴y+2>1,y>﹣1又y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:已知关于x、y的方程组3x−y=2a−5x+2y=3a+3的解都为正数.(1)求a的取值范围;(2)已知a﹣b=4,且b<2,a+b的取值范围;(3)已知a﹣b=m(m是大于0的常数),且b≤1,求2a+12b最大值.(用含m的代数式表示)25.为了开展全校学生阳光体育运动活动,增强学生身体素质,张老师所在的学校需要购买若干个足球和篮球.他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买.三次购买足球和篮球的数量和费用如下表:(1)张老师是第 次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,张老师决定从该商场一次性购买足球和篮球50个,且总费用不能超过2200元,那么最多可以购买多少个篮球.邮购个数1~99100以上(含100)邮寄费用商品价格的5%免费邮寄价格优惠不优惠优惠10%销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元足球数量(个)篮球数量(个)总费用(元)第一次65750第二次37780第三次78742