终身会员
搜索
    上传资料 赚现金
    第1讲 平面向量的概念及其运算(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第1讲 平面向量的概念及其运算(练透重点题型)(原卷版).docx
    • 解析
      第1讲 平面向量的概念及其运算(练透重点题型)(解析版).docx
    第1讲 平面向量的概念及其运算(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册)01
    第1讲 平面向量的概念及其运算(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册)02
    第1讲 平面向量的概念及其运算(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册)03
    第1讲 平面向量的概念及其运算(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册)01
    第1讲 平面向量的概念及其运算(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册)02
    第1讲 平面向量的概念及其运算(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册)03
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第1讲 平面向量的概念及其运算(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册)

    展开
    这是一份第1讲 平面向量的概念及其运算(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册),文件包含第1讲平面向量的概念及其运算练透重点题型原卷版docx、第1讲平面向量的概念及其运算练透重点题型解析版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。

    类型一:向量的有关概念
    类型二:相等向量与共线向量
    类型三:向量的加法与减法综合
    类型四:向量的数乘运算
    类型五:利用向量共线定理判断三点共线
    类型六:利用向量共线定理求参数
    类型七:平面向量的数量积(定值)
    类型八:求向量模(定值)
    类型九:求向量的夹角
    类型十:向量的投影
    类型十一:求向量模(最值,范围)
    类型十二:求平面向量数量积(最值,范围)
    类型十三:新定义题
    类型一:向量的有关概念
    典型例题
    例题1.(2023·高一单元测试)设 是 的相反向量,则下列说法错误的是( )
    A.与的长度必相等B.
    C.与一定不相等D.是的相反向量
    例题2.(多选)(2022秋·广东佛山·高二佛山市南海区南海执信中学校考开学考试)下列说法中正确的是( )
    A.若为单位向量,则B.若与共线,则或
    C.若,则D.是与非零向量共线的单位向量
    例题3.(2023·全国·高三专题练习)有下列命题:
    ①单位向量一定相等;
    ②起点不同,但方向相同且模相等的几个向量是相等向量;
    ③相等的非零向量,若起点不同,则终点一定不同;
    ④方向相反的两个单位向量互为相反向量;
    ⑤起点相同且模相等的向量的终点的轨迹是圆.
    其中正确的命题的个数为______.
    同类题型演练
    1.(2023·全国·高三专题练习)给出如下命题:
    ①向量的长度与向量的长度相等;
    ②向量与平行,则与的方向相同或相反;
    ③两个有共同起点而且相等的向量,其终点必相同;
    ④两个公共终点的向量,一定是共线向量;
    ⑤向量与向量是共线向量,则点,,,必在同一条直线上.
    其中正确的命题个数是( )
    A.1B.2C.3D.4
    2.(2023·高一课时练习)下列命题中,真命题是( )
    A.两个单位向量一定相等
    B.共线的单位向量必相等
    C.若与不共线,则与都是非零向量
    D.两个相等向量的起点、方向、长度必须都相同
    3.(多选)(2022·高一单元测试)下列结论中正确的是( )
    A.与是否相等与,的方向无关B.零向量相等,零向量的相反向量是零向量
    C.若,都是单位向量,则D.向量与相等
    类型二:相等向量与共线向量
    典型例题
    例题1.(2023·全国·高三专题练习)设,都是非零向量,成立的充分条件是( )
    A.B.
    C.D.且
    例题2.(2023·全国·高三专题练习)如图,等腰梯形中,对角线与交于点,点、分别在两腰、上,过点,且,则下列等式中成立的是( )
    A.B.
    C.D.
    例题3.(2023·高一课时练习)如图,和是在各边的处相交的两个全等的三角形,设的边长为,图中列出了长度均为的若干个向量,则:
    (1)与相等的向量有______;
    (2)与共线,且模相等的向量有______.
    同类题型演练
    1.(2022春·山西大同·高一大同市第三中学校校考期中)下列命题中,正确的是( )
    A.若,,则
    B.若,,则
    C.若两个单位向量互相平行,则这两个单位向量相等
    D.若,则与方向相同或相反
    2.(2023·高一课时练习),,,均为非零向量,且,,,则四边形ABCD的形状是______.
    3.(2023·高一课时练习)如图所示,已知四边形ABCD是矩形,O为对角线AC与BD的交点,设点集,向量的集合不重合且,则集合T有______个元素.
    类型三:向量的加法与减法综合
    典型例题
    例题1.(2023·高一课时练习)在四边形中, ,则四边形是( )
    A.菱形B.矩形C.正方形D.平行四边形
    例题2.(2023·全国·模拟预测)在正方形中,是的中点.若,,则( )
    A.B.
    C.D.
    例题3.(2023·全国·高三专题练习)如图,在中,为的中点,点在上,且,则等于( )
    A.B.
    C.D.
    例题4.(2023秋·北京西城·高一北京八中校考期末)如图,在平行四边形中,设.试用求表示及.
    同类题型演练
    1.(2023·高一课时练习)在平行四边形中,为上任一点,则等于
    A.B.C.D.
    2.(2023秋·北京丰台·高一统考期末)化简后等于( )
    A.B.C.D.
    3.(2023秋·北京房山·高一统考期末)在中,D为BC的中点,则( )
    A.B.
    C.D.
    4.(2023·高一课时练习)在矩形ABCD中,,则向量的长度等于______.
    类型四:向量的数乘运算
    典型例题
    例题1.(2023·全国·高三专题练习)已知是平面上的一个定点,、、是平面上不共线的三点,动点满足,则点的轨迹一定经过的( )
    A.重心B.外心C.内心D.垂心
    例题2.(2023·全国·高三专题练习)已知是所在平面内的一点,若,其中,则点一定在( )
    A.边所在的直线上B.边所在的直线上
    C.边所在的直线上D.的内部
    例题3.(2023·全国·高三专题练习)庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系,在如图所示的正五角星中,以,,,,为顶点的多边形为正五边形,且=.下列关系中正确的是( )
    A.
    B.
    C.
    D.
    例题4.(2023·高一单元测试)在中,为重心,,,分别是、、边的中点,则______.
    同类题型演练
    1.(2023·高一课时练习)已知G是的重心,则 等于( )
    A.B.
    C.D.
    2.(2023·高一单元测试)已知,若记,则______.
    3.(2023·高一课时练习)已知,若记,则的值为______.
    4.(2023·全国·高三专题练习)化简:___________.
    类型五:利用向量共线定理判断三点共线
    典型例题
    例题1.(2022·高一课时练习)已知,则下列结论中成立的是( )
    A.,,三点共线B.,,三点共线
    C.,,三点共线D.,,三点共线
    例题2.(2023秋·北京丰台·高一统考期末)如图,在平行四边形中,,.设,.
    (1)用,表示,;
    (2)用向量的方法证明:,,三点共线.
    例题3.(2023·高一课时练习)如图所示,在中,,分别是,的中点,.
    (1)用表示;
    (2)求证:,,三点共线.
    同类题型演练
    1.(2022·高一单元测试)已知,是不共线的向量,,若三点共线,则实数满足( )
    A.B.
    C.D.
    2.(2023·高一课时练习)设不共线的两个向量,,若,,.求证:、、三点共线.
    3.(2022春·高一课前预习)在平面直角坐标系中,为坐标原点,为平面上任一点,,,三点满足. 求的值;
    类型六:利用向量共线定理求参数
    典型例题
    例题1.(2023·全国·高三专题练习)已知平行四边形中,点为的中点,, (),若,则( )
    A.1B.2C.D.
    例题2.(2023·全国·高三专题练习)设,是平面内两个不共线的向量,,,,若,,三点共线,则的最小值是( )
    A.8B.6C.4D.2
    例题3.(2023·高一课时练习)设两个非零向量与不共线,
    (1)若,,,求证:,,三点共线;
    (2)试确定实数,使和共线.
    同类题型演练
    1.(2023·全国·高三专题练习)已知是平面内两个不共线向量,,,A,B,C三点共线,则m=( )
    A.-B.C.-6D.6
    2.(2023·全国·高三专题练习)已知向量,不共线,且向量与平行,则实数( )
    A.B.C.D.
    3.(2023·全国·高三专题练习)已知不共线向量,,,若A,B,C三点共线,则实数 __________.
    4.(2023·全国·高三专题练习)已知向量,不共线,若向量与向量共线,则的值为____________.
    类型七:平面向量的数量积(定值)
    典型例题
    例题1.(2023·全国·高三专题练习)在中,,,,则( )
    A.B.C.D.15
    例题2.(2023秋·广东·高三校联考阶段练习)已知在等腰中,,点在线段上,且,则的值为( )
    A.B.C.D.
    例题3.(2023秋·湖北·高三湖北省云梦县第一中学校联考期末)若向量在向量上的投影向量为,且,则数量积___________.
    例题4.(2023·全国·高三专题练习)如图,在矩形中,,,点为的中点,点在边上,若=,则的值是________.
    同类题型演练
    1.(2023·全国·高三专题练习)在中,,,,点是的中点,则( )
    A.B.4C.6D.
    2.(2023·全国·高三专题练习)设向量,夹角的余弦值为,且,,则( )
    A.B.C.D.
    3.(2023·全国·高三专题练习)已知,向量与的夹角为,则________.
    4.(2023·全国·高三专题练习)已知四边形为菱形,,,且,则__________.
    5.(2023·全国·高三专题练习)如图,在平行四边形ABCD中 ,AP⊥BD,垂足为P,且____.
    类型八:求向量模(定值)
    典型例题
    例题1.(2023·湖南邵阳·统考一模)设向量,满足,,则( )
    A.2B.C.3D.
    例题2.(2023·高一课时练习)已知两个非零向量、满足,则( )
    A.B.C.D.
    例题3.(2023·河南郑州·高三校联考阶段练习)已知平面向量、、是两两夹角均为的单位向量,则_____________.
    例题4.(2023·高一课时练习)若,,和的夹角为135°,求的值.
    同类题型演练
    1.(2023秋·北京西城·高一统考期末)正方形的边长为1,则( )
    A.1B.3C.D.
    2.(2023·广西梧州·统考一模)已知向量,满足,,,则( )
    A.3B.C.D.4
    3.(2023·全国·高三专题练习)已知向量,满足,,,则_________.
    4.(2023·江西景德镇·统考模拟预测)已知单位向量,,且,则___________.
    5.(2023·高一课时练习)已知,,且与的夹角为,,,则______.
    类型九:求向量的夹角
    典型例题
    例题1.(2023·全国·高三专题练习)若向量,满足,,,则与的夹角为( )
    A.B.C.D.
    例题2.(2023·全国·高三专题练习)已知平面向量,的夹角为,且,,则与的夹角是( )
    A.B.C.D.
    例题3.(2023·高一课时练习)已知,,若,则与的夹角为______.
    例题4.(2023·高一课时练习)已知非零向量,满足,,试求,的夹角.
    同类题型演练
    1.(2023·全国·高三专题练习)若向量,满足,,且,则向量与夹角的余弦值为( ).
    A.B.C.D.
    2.(2023·全国·高三专题练习)已知,,当时,向量与的夹角为( )
    A.B.C.D.
    3.(2023·全国·高三专题练习)已知平面向量,满足,,,则向量与的夹角为( )
    A.B.C.D.
    4.(2023·高一课时练习)已知,,,则______.
    类型十:向量的投影
    典型例题
    例题1.(2023·高一课时练习)已知,,当时,在方向上的投影数量为______;当时,在方向上的数量投影为______;当时,在方向上的数量投影为______.
    例题2.(2023·高一课时练习)已知向量与的夹角为,且,,则在方向上的投影向量与投影数量分别是( )
    A.,B.,
    C.,D.,
    例题3.(2023秋·陕西西安·高一西北工业大学附属中学校考期末)已知,,函数,当时,有最小值,则在上的投影向量为( )
    A.B.C.-D.-
    同类题型演练
    1.(2023·全国·高三专题练习)已知,,、的夹角为,则在方向上的数量投影为________.
    2.(2023秋·山西吕梁·高三统考期末)已知,则向量在向量上的投影向量为__________.
    类型十一:求向量模(最值,范围)
    典型例题
    例题1.(2023秋·安徽安庆·高三安徽省怀宁县新安中学校考期末)设单位向量与非零向量的夹角是,且,则的最小值为( )
    A.B.
    C.D.1
    例题2.(2023·全国·高三专题练习)若向量,互相垂直,且满足,则的最小值为( )
    A.B.1C.2D.
    例题3.(2023·全国·高三专题练习)已知平面向量,,,若,,,,则的最大值为( )
    A.2B.3C.4D.7
    例题4.(2023·全国·高三专题练习)已知两个不共线的向量,的夹角为,且,.
    (1)若与垂直,求;
    (2)若,求的最小值及对应的的值,并指出此时向量与的位置关系.
    同类题型演练
    1.(2023·全国·高三专题练习)已知,是两个互相垂直的单位向量,且,,则对任意的正实数的最小值是( )
    A.2B.C.4D.
    2.(2023·全国·高三专题练习)已知单位向量,满足,则的最小值为( )
    A.B.C.D.
    3.(2023·全国·高三专题练习)已知向量,满足,,若且(,),则的最小值为
    A.1B.C.D.
    4.(2023·全国·高三专题练习)已知向量,,满足:|+|=3,且,则|-|的取值范围是______.
    类型十二:求平面向量数量积(最值,范围)
    典型例题
    例题1.(2023秋·北京房山·高三统考期末)在中,,,则的取值范围为( )
    A.B.C.D.
    例题2.(2023·全国·高三专题练习)如图所示,半圆的直径,为圆心,是半圆上不同于,的任意一点,若为半径上的动点,则(+)·的最小值是( )
    A.B.C.-D.
    例题3.(2023·全国·高三专题练习)已知圆的半径为3,,为该圆的两条切线,为切点,则的最小值为___________.
    同类题型演练
    1.(2023·全国·高三专题练习)边长为1的正六边形ABCDEF,点M满足,若点P是其内部一点(包含边界),则的最大值是_________.
    2.(2023·全国·高三专题练习)如图所示是毕达哥拉斯的生长程序:正方形上连着等腰直角三角形,等腰直角三角形上再连接正方形,…,如此继续,正方形的边长为1,为正方形上的任一点,则的最大值为______.
    3.(2023·高一课时练习)已知正方形的边长为1,点是边上的动点.的最大值为______.
    类型十三:新定义题
    1.(2023·全国·高三专题练习)我国东汉末数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若,,则实数( )
    A.2B.3C.4D.5
    2.(2023·全国·高三专题练习)下如图是世界最高桥——贵州北盘江斜拉桥.下如图是根据下如图作的简易侧视图(为便于计算,侧视图与实物有区别).在侧视图中,斜拉杆PA,PB,PC,PD的一端P在垂直于水平面的塔柱上,另一端A,B,C,D与塔柱上的点O都在桥面同一侧的水平直线上.已知,,,.根据物理学知识得,则( )
    A.28mB.20mC.31mD.22m
    3.(多选)(2023·全国·高三专题练习)“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.如图,已知圆O的半径为2,点P是圆O内的定点,且,弦AC、BD均过点P,则下列说法正确的是( )
    A.为定值B.的取值范围是
    C.当时,为定值D.的最大值为12
    4.(2023·青海海东·统考一模)窗花是贴在窗纸或窗户玻璃上的前纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形的边长为2,中心为,四个半圆的圆心均为正方形各边的中点(如图2),若在的中点,则___________.
    相关试卷

    第2讲 平面向量基本定理及坐标表示(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册): 这是一份第2讲 平面向量基本定理及坐标表示(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册),文件包含第2讲平面向量基本定理及坐标表示练透重点题型原卷版docx、第2讲平面向量基本定理及坐标表示练透重点题型解析版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。

    数学必修 第一册5.2 三角函数的概念练习: 这是一份数学必修 第一册5.2 三角函数的概念练习,文件包含第1讲三角函数解析版docx、第1讲三角函数原卷版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。

    人教A版 (2019)必修 第一册1.1 集合的概念练习题: 这是一份人教A版 (2019)必修 第一册1.1 集合的概念练习题,文件包含第01讲集合及其运算解析版docx、第01讲集合及其运算原卷版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第1讲 平面向量的概念及其运算(练透重点题型)-2023-2024学年高一数学下学期重点题型精讲精练(人教A版必修第二册)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map