搜索
    上传资料 赚现金
    英语朗读宝

    中考复习专题训练与圆有关的位置关系

    中考复习专题训练与圆有关的位置关系第1页
    中考复习专题训练与圆有关的位置关系第2页
    中考复习专题训练与圆有关的位置关系第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考复习专题训练与圆有关的位置关系

    展开

    这是一份中考复习专题训练与圆有关的位置关系,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1.⊙O1的半径为1cm,⊙O2的半径为4cm,圆心距O1O2=3cm,这两圆的位置关系是( )
    A. 相交 B. 内切 C. 外切 D. 内含
    2.⊙O的半径为4,线段OP=4,则点P与⊙O的位置关系是( )
    A. 点P在⊙O外 B. 点P在⊙O内 C. 点P在⊙O上 D. 不能确定
    3.两圆外离,作它们的两条内公切线,四个切点构成的四边形是( )
    A. 矩形 B. 等腰梯形 C. 矩形或等腰梯形 D. 菱形
    4. 已知线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,则⊙A和⊙B的位置关系( )
    A. 内含 B. 相交 C. 外切 D. 外离
    5.下列四个命题中,真命题是 ( )
    A. 相等的圆心角所对的两条弦相等; B. 圆既是中心对称图形也是轴对称图形;
    C. 平分弦的直径一定垂直于这条弦; D. 相切两圆的圆心距等于这两圆的半径之和.
    6.在△ABC中,csB=, ∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为( )
    A. 15 B. 5 C. 6 D. 7
    7. 如图,已知⊙O的半径为4,点D是直径AB延长线上一点,DC切⊙O于点C,连接AC,若∠CAB=30°,则BD的长为( )
    A. 4 B. 8 C. 4 D. 2
    8.下列说法正确的是( )
    A. 任意三点可以确定一个圆
    B. 平分弦的直径垂直于弦,并且平分该弦所对的弧
    C. 同一平面内,点P到⊙O上一点的最小距离为2,最大距离为8,则该圆的半径为5
    D. 同一平面内,点P到圆心O的距离为5,且圆的半径为10,则过点P且长度为整数的弦共有5条
    9.如图,AB为⊙O的直径,P为AB延长线上一点,PT切⊙O于T,若PT=6,PB=2,则⊙O的直径为( )
    A. 8 B. 10 C. 16 D. 18
    10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于( )
    A. B. C. D. 1
    11.如图,⊙O的半径为2,点O到直线L的距离为3,点O是直线L上的一个动点,PQ切⊙O于点Q,则PQ的最小值为 ( )
    A. B. C. 3 D. 5
    12.已知如图,PA、PB切⊙O于A、B,MN切⊙O于C,交PB于N;若PA=7.5cm,则△PMN的周长是( )
    A. 7.5cm B. 10cm C. 15cm D. 12.5cm
    二、填空题
    13.已知⊙P在直角坐标平面内,它的半径是5,圆心P(﹣3,4),则坐标原点O与⊙P的位置关系是________
    14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是________.
    15.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是 上一点.将扇形AOB沿EF对折,使得折叠后的圆弧 恰好与半径OB相切于点G.若OE=4,则O到折痕EF的距离为________.

    16.如图,在Rt△ABC中,∠C=90°,AC≠BC,点M是边AC上的动点.过点M作MN∥AB交BC于N,现将△MNC沿MN折叠,得到△MNP.若点P在AB上.则以MN为直径的圆与直线AB的位置关系是________.
    17.如图,在⊙O中,OB为半径,AB是⊙O的切线,OA与⊙O相交于点C,∠A=30°,OA=8,则阴影部分的面积是________.
    18. 如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是∠ACQ的外心,其中正确结论是________ (只需填写序号).
    19.如图,AE、AD、BC分别切⊙O于E、D、F,若AD=20,则△ABC的周长为 ________

    20.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4 .若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=________时,⊙C与直线AB相切.

    21.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为________.

    三、解答题
    22.如图,已知PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.
    (1)求∠APB的度数;
    (2)当OA=3时,求AP的长.
    23.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.
    (1)求边AD、BC的长;
    (2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.
    24.在⊙O中,AB为直径,C为⊙O上一点.
    (Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=32°,求∠P的大小;
    (Ⅱ)如图②,D为优弧ADC上一点,且DO的延长线经过AC的中点E,连接DC与AB相交于点P,若∠CAB=16°,求∠DPA的大小.
    25.解答题
    (1)如图1,已知⊙O的半径是4,△ABC内接于⊙O,AC=4 .
    ①求∠ABC的度数;
    ②已知AP是⊙O的切线,且AP=4,连接PC.判断直线PC与⊙O的位置关系,并说明理由;
    (2)如图2,已知▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O内,延长BC交⊙O于点E,连接DE.求证:DE=DC.
    参考答案
    一、选择题
    B C C D B D C D C B B C
    二、填空题
    13. 点O在⊙P上
    14. x>5
    15. 2
    16. 相交
    17. 8 ﹣ π
    18. ②③
    19. 40
    20. 或
    21. 4﹣π
    三、解答题
    22. 解:(1)∵在△ABO中,OA=OB,∠OAB=30°,
    ∴∠AOB=180°-2×30°=120°,
    ∵PA、PB是⊙O的切线,
    ∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,
    ∴在四边形OAPB中,
    ∠APB=360°-120°-90°-90°=60°.
    (2)如图,连接OP;
    ∵PA、PB是⊙O的切线,
    ∴PO平分∠APB,即∠APO=∠APB=30°,
    又∵在Rt△OAP中,OA=3,∠APO=30°,
    ∴AP=.
    23. 解:(1)方法1:过D作DF⊥BC于F,
    在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6,
    ∴DC2=62+82=100,即DC=10.
    设AD=x,则DE=AD=x,EC=BC=x+6,
    ∴x+(x+6)=10.
    ∴x=2.
    ∴AD=2,BC=2+6=8.
    方法2:连OD、OE、OC,
    由切线长定理可知∠DOC=90°,AD=DE,CB=CE,
    设AD=x,则BC=x+6,
    由射影定理可得:OE2=DE•EC.
    即:x(x+6)=16,
    解得x1=2,x2=﹣8,(舍去)
    ∴AD=2,BC=2+6=8.
    (2)存在符合条件的P点.
    设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况:
    ①△ADP∽△BCP时,有即∴y=;
    ②△ADP∽△BPC时,有即∴y=4.
    故存在符合条件的点P,此时AP=或4.
    24. 解:(Ⅰ)连接OC,如图①,
    ∵PC为切线,
    ∴OC⊥PC,
    ∴∠OCP=90°,
    ∵OA=OC,
    ∴∠OCA=∠CAB=32°,
    ∴∠POC=∠OCA+∠CAB=64°,
    ∴∠P=90°﹣∠POC=90°﹣64°=26°;
    (Ⅱ)如图②,
    ∵点E为AC的中点,
    ∴OD⊥AC,
    ∴∠OEA=90°,
    ∴∠AOD=∠CAB+∠OEA=16°+90°=106°,
    ∴∠C= ∠AOD=53°,
    ∴∠DPA=∠BAC+∠C=16°+53°=69°
    25. (1)解:①连结OA、OC,如图1,
    ∵OA=OC=4,AC=4 ,
    ∴OA2+OC2=AC2 ,
    ∴△OCA为等腰直角三角形,∠AOC=90°,
    ∴∠ABC= ∠AOC=45°;
    ②直线PC与⊙O相切.理由如下:
    ∵AP是⊙O的切线,
    ∴∠OAP=90°,
    而∠AOC=90°,
    ∴AP∥OC,
    而AP=OC=4,
    ∴四边形APCO为平行四边形,
    ∵∠AOC=90°,
    ∴四边形AOCP为矩形,
    ∴∠PCO=90°,
    ∴PC⊥OC,
    ∴PC为⊙O的切线
    (2)证明:∵四边形ABCD为平行四边形,
    ∴AB∥CD,AD∥BC,
    ∴∠B+∠A=180°,∠DCE=∠B,
    ∵∠E+∠A=180°,
    ∴∠E=∠B,
    ∴∠DCE=∠E,
    ∴DC=DE.

    相关试卷

    最新中考数学总复习真题探究与变式训练(讲义) 专题20 与圆有关的位置关系(5大考点):

    这是一份最新中考数学总复习真题探究与变式训练(讲义) 专题20 与圆有关的位置关系(5大考点),文件包含专题20与圆有关的位置关系5大考点原卷版docx、专题20与圆有关的位置关系5大考点解析版docx等2份试卷配套教学资源,其中试卷共121页, 欢迎下载使用。

    中考数学一轮复习考点题型归纳与分层训练专题30 与圆有关的位置关系(2份打包,原卷版+解析版):

    这是一份中考数学一轮复习考点题型归纳与分层训练专题30 与圆有关的位置关系(2份打包,原卷版+解析版),文件包含中考数学一轮复习考点题型归纳与分层训练专题30与圆有关的位置关系原卷版doc、中考数学一轮复习考点题型归纳与分层训练专题30与圆有关的位置关系含解析doc等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。

    中考数学一轮复习考点复习专题34 与圆有关的位置关系【专题巩固】(含解析):

    这是一份中考数学一轮复习考点复习专题34 与圆有关的位置关系【专题巩固】(含解析),共15页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map