![专题32图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】01](http://img-preview.51jiaoxi.com/2/3/15535241/0-1711338106656/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题32图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】02](http://img-preview.51jiaoxi.com/2/3/15535241/0-1711338106702/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题32图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】03](http://img-preview.51jiaoxi.com/2/3/15535241/0-1711338106725/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题32图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】01](http://img-preview.51jiaoxi.com/2/3/15535241/1-1711338137944/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题32图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】02](http://img-preview.51jiaoxi.com/2/3/15535241/1-1711338137978/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题32图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】03](http://img-preview.51jiaoxi.com/2/3/15535241/1-1711338138012/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
专题32图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】
展开1.(2023•恩施州)如图,在△ABC中,DE∥BC分别交AC,AB于点D,E,EF∥AC交BC于点F,AEBE=25,BF=8,则DE的长为( )
A.165B.167C.2D.3
2.(2023•泰安)如图,△ABC是等腰三角形,AB=AC,∠A=36°.以点B为圆心,任意长为半径作弧,交AB于点F,交BC于点G,分别以点F和点G为圆心,大于12FG的长为半径作弧,两弧相交于点H,作射线BH交AC于点D;分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于M、N两点,作直线MN交AB于点E,连接DE.下列四个结论:①∠AED=∠ABC;②BC=AE;③ED=12BC;④当AC=2时,AD=5−1.其中正确结论的个数是( )
A.1B.2C.3D.4
3.(2023•威海)如图,四边形ABCD是一张矩形纸片.将其按如图所示的方式折叠:使DA边落在DC边上,点A落在点H处,折痕为DE;使CB边落在CD边上,点B落在点G处,折痕为CF.若矩形HEFG与原矩形ABCD相似,AD=1,则CD的长为( )
A.2−1B.5−1C.2+1D.5+1
4.(2023•吉林)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC点E.若AD=2,BD=3,则AEAC的值是( )
A.25B.12C.35D.23
5.(2023•徐州)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且ADAB=DEBC,则AE的长为( )
A.1B.2C.1或32D.1或2
6.(2015•铜仁市)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )
A.3:4B.9:16C.9:1D.3:1
7.(2023•东营)如图,△ABC为等边三角形,点D,E分别在边BC,AB上,∠ADE=60°.若BD=4DC,DE=2.4,则AD的长为( )
A.1.8B.2.4C.3D.3.2
8.(2023•东营)如图,正方形ABCD的边长为4,点E,F分别在边DC,BC上,且BF=CE,AE平分∠CAD,连接DF,分别交AE,AC于点G,M.P是线段AG上的一个动点,过点P作PN⊥AC,垂足为N,连接PM.有下列四个结论:
①AE垂直平分DM;
②PM+PN的最小值为32;
③CF2=GE•AE;
④S△ADM=62.
其中正确的是( )
A.①②B.②③④C.①③④D.①③
9.(2023•绥化)如图,在正方形ABCD中,点E为边CD的中点,连接AE,过点B作BF⊥AE于点F,连接BD交AE于点G,FH平分∠BFG交BD于点H.则下列结论中,正确的个数为( )
①AB2=BF•AE
②S△BGF:S△BAF=2:3
③当AB=a时,BD2﹣BD•HD=a2
A.0个B.1个C.2个D.3个
10.(2023•绍兴)如图,在△ABC中,D是边BC上的点(不与点B,C重合).过点D作DE∥AB交AC于点E;过点D作DF∥AC交AB于点F、N是线段BF上的点,BN=2NF:M是线段DE上的点,DM=2ME.若已知△CMN的面积,则一定能求出( )
A.△AFE的面积B.△BDF的面积C.△BCN的面积D.△DCE的面积
11.(2023•烟台)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形PA1A2A3,正方形PA4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形PA1A2A3的顶点坐标分别为P(﹣3,0),A1(﹣2,1),A2(﹣1,0),A3(﹣2,﹣1),则顶点A100的坐标为( )
A.(31,34)B.(31,﹣34)C.(32,35)D.(32,0)
12.(2023•南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为( )
A.6.4mB.8mC.9.6mD.12.5m
13.(2022•衡阳)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是(结果精确到0.01m.参考数据:2≈1.414,3≈1.732,5≈2.236)( )
A.0.73mB.1.24mC.1.37mD.1.42m
14.(2022•攀枝花)如图,在矩形ABCD中,AB=6,AD=4,点E、F分别为BC、CD的中点,BF、DE相交于点G,过点E作EH∥CD,交BF于点H,则线段GH的长度是( )
A.56B.1C.54D.53
15.(2022•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是( )
A.①②B.②③C.①③D.①②③
16.(2022•连云港)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=435AD;③GE=6DF;④OC=22OF;⑤△COF∽△CEG.其中正确的是( )
A.①②③B.①③④C.①④⑤D.②③④
17.(2022•威海)由12个有公共顶点O的直角三角形拼成如图所示的图形,∠AOB=∠BOC=∠COD=…=∠LOM=30°.若S△AOB=1,则图中与△AOB位似的三角形的面积为( )
A.(43)3B.(43)7C.(43)6D.(34)6
18.(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=23.其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
19.(2022•潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为5−12,下列估算正确的是( )
A.0<5−12<25B.25<5−12<12C.12<5−12<1D.5−12>1
20.(2022•黑龙江)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②∠OPA=45°;③AP﹣BP=2OP;④若BE:CE=2:3,则tan∠CAE=47;⑤四边形OECF的面积是正方形ABCD面积的14.其中正确的结论是( )
A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤
二.填空题(共20小题)
21.(2023•大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M恰好落在边DC上,则图中与△NDM一定相似的三角形是 .
22.(2023•牡丹江)如图,在正方形ABCD中,E在边CD上,BE交对角线AC于点F,CM⊥BE于M,∠CME的平分线所在直线分别交CD,AC于点N,P,连接FN.
下列结论:①S△NPF:S△NPC=FM:MC;②CM=PN;③EN•CD=EC•CF;④若EM=1,MB=4,则PM=2.其中正确的是 .
23.(2023•北京)如图,直线AD,BC交于点O,AB∥EF∥CD,若AO=2,OF=1,FD=2,则BEEC的值为 .
24.(2023•日照)如图,矩形ABCD中,AB=6,AD=8,点P在对角线BD上,过点P作MN⊥BD,交边AD,BC于点M,N,过点M作ME⊥AD交BD于点E,连接EN,BM,DN.下列结论:
①EM=EN;
②四边形MBND的面积不变;
③当AM:MD=1:2时,S△MPE=9625;
④BM+MN+ND的最小值是20.
其中所有正确结论的序号是 .
25.(2023•鄂州)如图,在平面直角坐标系中,△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A(9,3),则A1点的坐标是 .
26.(2023•鄂州)2002年的国际数学家大会在中国北京举行,这是21世纪全世界数学家的第一次大聚会.这次大会的会徽选定了我国古代数学家赵爽用来证明勾股定理的弦图,世人称之为“赵爽弦图”.如图,用四个全等的直角三角形(Rt△AHB≌Rt△BEC≌Rt△CFD≌Rt△DGA)拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH,连接AC和EG,AC与DF、EG、BH分别相交于点P、O、Q,若BE:EQ=3:2,则OPOE的值是 .
27.(2023•辽宁)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(1,0),B(2,3),C(﹣1,2),若四边形OA′B′C′与四边形OABC关于原点O位似,且四边形OA′B′C′的面积是四边形OABC面积的4倍,则第一象限内点B′的坐标为 .
28.如图1,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,D是AB上一点,且AD=2,过点D作DE∥BC交AC于E,将△ADE绕A点顺时针旋转到图2的位置.则图2中BDCE的值为 .
29.(2023•绥化)如图,在平面直角坐标系中,△ABC与△AB′C′的相似比为1:2,点A是位似中心,已知点A(2,0),点C(a,b),∠C=90°.则点C′的坐标为 .(结果用含a,b的式子表示)
30.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设BCAB=k,若AD=DF,则CFFA= (结果用含k的代数式表示).
31.(2023•达州)如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为 cm.(结果保留根号)
32.(2022•阜新)如图,在矩形ABCD中,E是AD边上一点,且AE=2DE,BD与CE相交于点F,若△DEF的面积是3,则△BCF的面积是 .
33.(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为 米.
34.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .
35.(2022•潍坊)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为 .
36.(2022•黔西南州)如图,在平面直角坐标系中,△OAB与△OCD位似,位似中心是坐标原点O.若点A(4,0),点C(2,0),则△OAB与△OCD周长的比值是 .
37.(2022•鞍山)如图,在正方形ABCD中,点E为AB的中点,CE,BD交于点H,DF⊥CE于点F,FM平分∠DFE,分别交AD,BD于点M,G,延长MF交BC于点N,连接BF.下列结论:①tan∠CDF=12;②S△EBH:S△DHF=3:4;③MG:GF:FN=5:3:2;④△BEF∽△HCD.其中正确的是 .(填序号即可).
38.(2022•丹东)如图,四边形ABCD是边长为6的菱形,∠ABC=60°,对角线AC与BD交于点O,点E,F分别是线段AB,AC上的动点(不与端点重合),且BE=AF,BF与CE交于点P,延长BF交边AD(或边CD)于点G,连接OP,OG,则下列结论:①△ABF≌△BCE;②当BE=2时,△BOG的面积与四边形OCDG面积之比为1:3;③当BE=4时,BE:CG=2:1;④线段OP的最小值为25−23.其中正确的是 .(请填写序号)
39.(2022•呼和浩特)已知AB为⊙O的直径且AB=2,点C是⊙O上一点(不与A、B重合),点D在半径OB上,且AD=AC,AE与过点C的⊙O的切线垂直,垂足为E.若∠EAC=36°,则CD= ,OD= .
40.(2021•包头)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD=3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为 .
三.解答题(共20小题)
41.(2023•营口)在▱ABCD中,∠ADB=90°,点E在CD上,点G在AB上,点F在BD的延长线上,连接EF,DG,∠FED=∠ADG,ADBD=DGEF=k.
(1)如图1,当k=1时,请用等式表示线段AG与线段DF的数量关系 ;
(2)如图2,当k=3时,写出线段AD,DE和DF之间的数量关系,并说明理由;
(3)在(2)的条件下,当点G是AB的中点时,连接BE,求tan∠EBF的值.
42.(2023•赤峰)数学兴趣小组探究了以下几何图形.如图①,把一个含有45°角的三角尺放在正方形ABCD中,使45°角的顶点始终与正方形的顶点C重合,绕点C旋转三角尺时,45°角的两边CM,CN始终与正方形的边AD,AB所在直线分别相交于点M,N,连接MN,可得△CMN.
【探究一】如图②,把△CDM绕点C逆时针旋转90°得到△CBH,同时得到点H在直线AB上.求证:∠CNM=∠CNH;
【探究二】在图②中,连接BD,分别交CM,CN于点E,F.求证:△CEF∽△CNM;
【探究三】把三角尺旋转到如图③所示位置,直线BD与三角尺45°角两边CM,CN分别交于点E,F,连接AC交BD于点O,求EFNM的值.
43.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.
【问题解决】
(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.
【类比迁移】
(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.
44.(2023•武汉)问题提出 如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α (α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.
问题探究 (1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;
(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.
问题拓展 将图(1)特殊化,如图(3),当α=120°时,若DGCG=12,求BECE的值.
45.如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=3FG.
若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②;若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③;其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.
46.(2023•福建)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.
(1)求证:△ADE∽△FMC;
(2)求∠ABF的度数;
(3)若N是AF的中点,如图2,求证:ND=NO.
47.(2023•上海)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC=∠ADE,AC=AD.
(1)求证:DE=AF;
(2)若∠ABC=∠CDE,求证:AF2=BF•CE.
48.(2023•江西)课本再现
定理证明
(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.
已知:在▱ABCD中,对角线BD⊥AC,垂足为O.
求证:▱ABCD是菱形.
知识应用
(2)如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.
①求证:▱ABCD是菱形;
②延长BC至点E,连接OE交CD于点F,若∠E=12∠ACD,求OFEF的值.
49.(2023•宜昌)如图,在正方形ABCD中,E,F分别是边AD,AB上的点,连接CE,EF,CF.
(1)若正方形ABCD的边长为2,E是AD的中点.
①如图1,当∠FEC=90°时,求证:△AEF∽△DCE;
②如图2,当tan∠FCE=23时,求AF的长;
(2)如图3,延长CF,DA交于点G,当GE=DE,sin∠FCE=13时,求证:AE=AF.
50.(2023•苏州)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,AC=5,BC=25,点F在AB上,连接CF并延长,交⊙O于点D,连接BD,作BE⊥CD,垂足为E.
(1)求证:△DBE∽△ABC;
(2)若AF=2,求ED的长.
51.(2023•云南)如图,BC是⊙O的直径,A是⊙O上异于B、C的点.⊙O外的点E在射线CB上,直线EA与CD垂直,垂足为D,且DA•AC=DC•AB.设△ABE的面积为S1,△ACD的面积为S2.
(1)判断直线EA与⊙O的位置关系,并证明你的结论;
(2)若BC=BE,S2=mS1,求常数m的值.
52.(2023•达州)(1)如图①,在矩形ABCD的AB边上取一点E,将△ADE沿DE翻折,使点A落在BC上A'处,若AB=6,BC=10,求AEEB的值;
(2)如图②,在矩形ABCD的BC边上取一点E,将四边形ABED沿DE翻折,使点B落在DC的延长线上B'处,若BC•CE=24,AB=6,求BE的值;
(3)如图③,在△ABC中,∠BAC=45°,AD⊥BC,垂足为点D,AD=10,AE=6,过点E作EF⊥AD交AC于点F,连接DF,且满足∠DFE=2∠DAC,直接写出BD+53EF的值.
53.(2023•重庆)在Rt△ABC中,∠ACB=90°,∠B=60°,点D为线段AB上一动点,连接CD.
(1)如图1,若AC=9,BD=3,求线段AD的长;
(2)如图2,以CD为边在CD上方作等边△CDE,点F是DE的中点,连接BF并延长,交CD的延长线于点G.若∠G=∠BCE,求证:GF=BF+BE;
(3)在CD取得最小值的条件下,以CD为边在CD右侧作等边△CDE.点M为CD所在直线上一点,将△BEM沿BM所在直线翻折至△ABC所在平面内得到△BNM.连接AN,点P为AN的中点,连接CP,当CP取最大值时,连接BP,将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,请直接写出此时NQCP的值.
54.如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.
(1)若BE平分∠CBD,求证:BF⊥AC;
(2)找出图中与△OBF相似的三角形,并说明理由;
(3)若OF=3,EF=2,求DE的长度.
55.(2022•遂宁)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)若AB=6,AC=8,求点O到AD的距离.
56.(2022•宁波)【基础巩固】
(1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.
【尝试应用】
(2)如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求DEBC的值.
【拓展提高】
(3)如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.
57.(2022•营口)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.
(1)求证:∠D=∠EBC;
(2)若CD=2BC,AE=3,求⊙O的半径.
58.(2022•郴州)如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.
(1)求证:△AEF∽△DCE;
(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.
①求AG+GM的最小值;
②当AG+GM取最小值时,求线段DE的长.
59.(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC的延长线于点E,且EG=EC.
(1)求证:DE是⊙O的切线;
(2)若点F是OA的中点,BD=4,sin∠D=13,求EC的长.
60.(2022•烟台)【问题呈现】
如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.
【类比探究】
如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出BDCE的值.
【拓展提升】
如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且ABBC=ADDE=34.连接BD,CE.
(1)求BDCE的值;
(2)延长CE交BD于点F,交AB于点G.求sin∠BFC的值.
思考
我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?
可以发现并证明菱形的一个判定定理;
对角线互相垂直的平行四边形是菱形.
专题32锐角三角函数函数(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】: 这是一份专题32锐角三角函数函数(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题33锐角三角函数函数优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题33锐角三角函数函数优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共83页, 欢迎下载使用。
专题31图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】: 这是一份专题31图形的相似(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题32图形的相似优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题32图形的相似优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共126页, 欢迎下载使用。
专题30图形的旋转(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】: 这是一份专题30图形的旋转(优选真题60道)-三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题31图形的旋转优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题31图形的旋转优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共127页, 欢迎下载使用。