所属成套资源:备战2024年中考数学一轮复习重难题型(全国通用)
专题15 反比例函数与几何图形综合题(与三角形、与特殊四边形)-备战2024年中考数学一轮复习重难题型(全国通用)
展开
这是一份专题15 反比例函数与几何图形综合题(与三角形、与特殊四边形)-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题15反比例函数与几何图形综合题与三角形与特殊四边形原卷版docx、专题15反比例函数与几何图形综合题与三角形与特殊四边形解析版docx等2份试卷配套教学资源,其中试卷共96页, 欢迎下载使用。
2、学会运用数形结合思想。数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
3、要学会抢得分点。一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
4、学会运用等价转换思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
5、学会运用分类讨论的思想。如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
6、转化思想:体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
专题15反比例函数与几何图形综合题
(与三角形、与特殊四边形)
类型一与三角形有关
1.(2023·四川广安·统考中考真题)如图,一次函数(为常数,)的图象与反比例函数为常数,的图象在第一象限交于点,与轴交于点.
(1)求一次函数和反比例函数的解析式.
(2)点在轴上,是以为腰的等腰三角形,请直接写出点的坐标.
【答案】(1)一次函数的解析式为,反比例函数的解析式为;(2)或或
【分析】(1)根据待定系数法,把已知点代入再解方程即可得出答案;
(2)首先利用勾股定理求出得的长,再分两种情形讨论即可.
【详解】(1)解:把点代入一次函数得,
解得:,
故一次函数的解析式为,
把点代入,得,
,
把点代入,得,
故反比例函数的解析式为;
(2)解:,,,
当时,或,
当时,点关于直线对称,
,
综上所述:点的坐标为或或.
【点睛】本题是反比例函数综合题,主要考查了函数图象上点的坐标的特征,等腰三角形的性质等知识,运用分类思想是解题的关键.
2.(2023·湖南·统考中考真题)如图,点A的坐标是,点B的坐标是,点C为中点,将绕着点B逆时针旋转得到.
(1)反比例函数的图像经过点,求该反比例函数的表达式;
(2)一次函数图像经过A、两点,求该一次函数的表达式.
【答案】(1);(2)
【分析】(1)由点B的坐标是,点C为中点,可得,,由旋转可得:,,可得,可得,从而可得答案;
(2)如图,过作于,则,而,,证明,可得,,,设直线为,再建立方程组求解即可.
【详解】(1)解:∵点B的坐标是,点C为中点,
∴,,
由旋转可得:,,
∴,
∴,
∴反比例函数的表达式为;
(2)如图,过作于,
则,而,,
∴,
∴,
∴,
∴,,
∴,
∴,
设直线为,
∴,解得:,
∴直线为.
【点睛】本题考查的是旋转的性质,利用待定系数法求解一次函数与反比例函数的解析式,全等三角形的判定与性质,熟练的求解是解本题的关键.
3.(2023·四川南充·统考中考真题)如图,一次函数图象与反比例函数图象交于点,,与x轴交于点C,与y轴交于点D.
(1)求反比例函数与一次函数的解析式;
(2)点M在x轴上,若,求点M的坐标.
【答案】(1)反比例函数解析式为,一次函数的解析式为;(2)M点的坐标为或
【分析】(1)设反比例函数解析式为,将代入,根据待定系数法,即可得到反比例函数解析式,将代入求得的反比例函数,解得a的值,得到B点坐标,最后根据待定系数法即可求出一次函数解析式;
(2)求出点C的坐标,根据求出,分两种情况:M在O点左侧;M点在O点右侧,根据三角形面积公式即可解答.
【详解】(1)解:设反比例函数解析式为,
将代入,可得,解得,
反比例函数的解析式为,
把代入,可得,
解得,
经检验,是方程的解,
,
设一次函数的解析式为,
将,代入,
可得,
解得,
一次函数的解析式为;
(2)解:当时,可得,
解得,
,
,
,
,
,
,
M在O点左侧时,;
M点在O点右侧时,,
综上,M点的坐标为或.
【点睛】本题考查了待定系数法求一次函数和反比例函数,一次函数与三角形面积问题,熟练求出是解题的关键.
4.(2023·四川遂宁·统考中考真题)如图,一次函数的图像与反比例函数的图像交于,两点.(,,为常数)
(1)求一次函数和反比例函数的解析式;
(2)根据图像直接写出不等式的解集;
(3)为轴上一点,若的面积为,求点的坐标.
【答案】(1);;(2)或;(3)或
【分析】(1)利用待定系数法即可求出函数解析式;
(2)根据图像位置关系即可得解;
(3)设,当点P在直线下方时,画出图形,根据关系列方程,然后解方程即可得解,同理,当点P在直线上方时,画出图形,根据列方程求解即可.
【详解】(1)解:将点代入得,
∴,
∴反比例函数的解析式为;
将点代入得,
∴,
将点、分别代入得,
解得,
∴一次函数的解析式为;
(2)根据图像可知,当时,直线在反比例函数图像的上方,满足,
∴不等式的解集为或;
(3)如图过点作轴平行线与交于点,分别过点,作直线垂线,垂足分别为点、,
设,则,
∴,
则,
,
,
,
,
∵的面积为,
∴,
∴,
即点的坐标为.
如图,过作轴于点,过作轴于点,设,
由(1)得:,,
∴,,
∴,,,
则
,
,
∴,
即点的坐标为,
综上所述:或.
【点睛】本题考查反比例函数与一次函数综合、待定系数法求函数解析式、利用图像解不等式、坐标与图形等知识,掌握反比例函数与一次函数图像与性质是解题关键.
5.(2023·四川宜宾·统考中考真题)如图,在平面直角坐标系中,等腰直角三角形的直角顶点,顶点A、恰好落在反比例函数第一象限的图象上.
(1)分别求反比例函数的表达式和直线所对应的一次函数的表达式;
(2)在x轴上是否存在一点P,使周长的值最小.若存在,求出最小值;若不存在,请说明理由.
【答案】(1),;(2)在x轴上存在一点,使周长的值最小,最小值是.
【分析】(1)过点A作轴于点E,过点B作轴于点D,证明,则,由得到点A的坐标是,由A、恰好落在反比例函数第一象限的图象上得到,解得,得到点A的坐标是,点B的坐标是,进一步用待定系数法即可得到答案;
(2)延长至点,使得,连接交x轴于点P,连接,利用轴对称的性质得到,,则,由知是定值,此时的周长为最小,利用待定系数法求出直线的解析式,求出点P的坐标,再求出周长最小值即可.
【详解】(1)解:过点A作轴于点E,过点B作轴于点D,
则,
∵点,,
∴,
∴,
∵是等腰直角三角形,
∴,
∵,
∴,
∴,
∴,
∴,
∴点A的坐标是,
∵A、恰好落在反比例函数第一象限的图象上.
∴,
解得,
∴点A的坐标是,点B的坐标是,
∴,
∴反比例函数的解析式是,
设直线所对应的一次函数的表达式为,把点A和点B的坐标代入得,
,解得,
∴直线所对应的一次函数的表达式为,
(2)延长至点,使得,连接交x轴于点P,连接,
∴点A与点关于x轴对称,
∴,,
∵,
∴的最小值是的长度,
∵,即是定值,
∴此时的周长为最小,
设直线的解析式是,
则,
解得,
∴直线的解析式是,
当时,,解得,
即点P的坐标是,
此时,
综上可知,在x轴上存在一点,使周长的值最小,最小值是.
【点睛】此题考查了反比例函数和一次函数的图象和性质、用到了待定系数法求函数解析式、勾股定理求两点间距离、轴对称最短路径问题、全等三角形的判定和性质等知识,数形结合和准确计算是解题的关键.
6.(2023·江苏苏州·统考中考真题)如图,一次函数的图象与反比例函数的图象交于点.将点沿轴正方向平移个单位长度得到点为轴正半轴上的点,点的横坐标大于点的横坐标,连接的中点在反比例函数的图象上.
(1)求的值;
(2)当为何值时,的值最大?最大值是多少?
【答案】(1),;(2)当时,取得最大值,最大值为
【分析】(1)把点代入,得出,把点代入,即可求得;
(2)过点作轴的垂线,分别交轴于点,证明,得出,进而可得,根据平移的性质得出,,进而表示出,根据二次函数的性质即可求解.
【详解】(1)解:把点代入,
∴,
解得:;
把点代入,解得;
(2)∵点横坐标大于点的横坐标,
∴点在点的右侧,
如图所示,过点作轴的垂线,分别交轴于点,
∵,
∴,
在和中,
,
∴,
∴,
∵,
∴,
∴,
∵将点沿轴正方向平移个单位长度得到点,
∴,
∴,
∴,
∴,
∴,
∴当时,取得最大值,最大值为.
【点睛】本题考查了一次函数与反比例函数综合,二次函数的性质,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.
7.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中,一次函数与反比例函数交于,两点,与y轴交于点C,连接,.
(1)求反比例函数和一次函数的表达式;
(2)求的面积;
(3)请根据图象直接写出不等式的解集.
【答案】(1),;(2)9;(3)或
【分析】(1)把点B代入反比例函数,即可得到反比例函数的解析式;把点A代入反比例函数,即可求得点A的坐标;把点A、B的坐标代入一次函数一次函数即可求得a、b的值,从而得到一次函数的解析式;
(2)的面积是和的面积之和,利用面积公式求解即可;
(3)利用图象,找到反比例函数图象在一次函数图象下方所对应的x的范围,直接得出结论.
【详解】(1)∵点在反比例函数的图象上,
∴,
解得:
∴反比例函数的表达式为.
∵在反比例函数的图象上,
∴,
解得,(舍去).
∴点A的坐标为.
∵点A,B在一次函数的图象上,
把点,分别代入,得,
解得,
∴一次函数的表达式为;
(2)∵点C为直线与y轴的交点,
∴把代入函数,得
∴点C的坐标为
∴,
∴
.
(3)由图象可得,不等式的解集是或.
【点睛】此题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,三角形面积,函数与不等式的关系,求出两个函数解析式是解本题的关键.
8.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,与反比例函数在第四象限内的图象交于点.
(1)求反比例函数的表达式:
(2)当时,直接写出x的取值范围;
(3)在双曲线上是否存在点P,使是以点A为直角顶点的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1);(2)或;(3)或
【分析】(1)将,代入,求得一次函数表达式,进而可得点C的坐标,再将点C的坐标代入反比例函数即可;
(2)将一次函数与反比例函数联立方程组,求得交点坐标即可得出结果;
(3)过点A作交y轴于点M,勾股定理得出点M的坐标,在求出直线AP的表达式,与反比例函数联立方程组即可.
【详解】(1)解:把,代入中得:,
∴,
∴直线的解析式为,
在中,当时,,
∴,
把代入中得:,
∴,
∴反比例函数的表达式;
(2)解:联立,解得或,
∴一次函数与反比例函数的两个交点坐标分别为,
∴由函数图象可知,当或时,一次函数图象在反比例函数图象上方,
∴当时,或;
(3)解:如图所示,设直线交y轴于点,
∵,,
∴,,,
∵是以点A为直角顶点的直角三角形,
∴,
∴,
∴,
解得,
∴,
同理可得直线的解析式为,
联立,解得或,
∴点P的坐标为或.
【点睛】本题主要考查了反比例函数与一次函数综合,勾股定理,正确利用待定系数法求出对应的函数解析式是解题的关键.
9.(2023·湖北黄冈·统考中考真题)如图,一次函数与函数为的图象交于两点.
(1)求这两个函数的解析式;
(2)根据图象,直接写出满足时x的取值范围;
(3)点P在线段上,过点P作x轴的垂线,垂足为M,交函数的图象于点Q,若面积为3,求点P的坐标.
【答案】(1),;(2);(3)点P的坐标为或
【分析】(1)将代入可求反比例函数解析式,进而求出点B坐标,再将和点B坐标代入即可求出一次函数解析式;
(2)直线在反比例函数图象上方部分对应的x的值即为所求;
(3)设点P的横坐标为,代入一次函数解析式求出纵坐标,将代入反比例函数求出点Q的纵坐标,进而用含p的代数式表示出,再根据面积为3列方程求解即可.
【详解】(1)解:将代入,可得,
解得,
反比例函数解析式为;
在图象上,
,
,
将,代入,得:
,
解得,
一次函数解析式为;
(2)解:,理由如下:
由(1)可知,
当时,,
此时直线在反比例函数图象上方,此部分对应的x的取值范围为,
即满足时,x的取值范围为;
(3)解:设点P的横坐标为,
将代入,可得,
.
将代入,可得,
.
,
,
整理得,
解得,,
当时,,
当时,,
点P的坐标为或.
【点睛】本题属于一次函数与反比例函数的综合题,考查求一次函数解析式、反比例函数解析式,坐标系中求三角形面积、解一元二次方程等知识点,解题的关键是熟练运用数形结合思想.
10.(2023·湖南·统考中考真题)如图所示,在平面直角坐标系中,四边形为正方形,其中点A、C分别在x轴负半轴,y轴负半轴上,点B在第三象限内,点,点在函数的图像上
(1)求k的值;
(2)连接,记的面积为S,设,求T的最大值.
【答案】(1);(2)1
【分析】(1)点在函数的图像上,代入即可得到k的值;
(2)由点在x轴负半轴得到,由四边形为正方形得到,轴,得的面积为,则,根据二次函数的性质即可得到T的最大值.
【详解】(1)解:∵点在函数的图像上,
∴,
∴,
即k的值为2;
(2)∵点在x轴负半轴,
∴,
∵四边形为正方形,
∴,轴,
∴的面积为,
∴,
∵,
∴抛物线开口向下,
∴当时,有最大值,T的最大值是1.
【点睛】此题考查了二次函数的性质、反比例函数的图象和性质、正方形的性质等知识,数形结合和准确计算是解题的关键.
11.(2023·四川·统考中考真题)如图,已知一次函数的图象与反比例函数的图象交于,B两点,与x轴交于点C,将直线沿y轴向上平移3个单位长度后与反比例函数图象交于点D,E.
(1)求k,m的值及C点坐标;
(2)连接,,求的面积.
【答案】(1);;;(2)
【分析】(1)把点代入和求出k、m的值即可;把代入的解析式,求出点C的坐标即可;
(2)延长交x轴于点F,先求出平移后的关系式,再求出点D的坐标,然后求出解析式,得出点F的坐标,根据求出结果即可.
【详解】(1)解:把点代入和得:
,,
解得:,,
∴的解析式为,反比例函数解析式为,
把代入得:,
解得:,
∴点C的坐标为;
(2)解:延长交x轴于点F,如图所示:
将直线沿y轴向上平移3个单位长度后解析式为:
,
联立,
解得:,,
∴点,
设直线的解析式为,把,代入得:
,
解得:,
∴直线的解析式为,
把代入得,
解得:,
∴点F的坐标为,
∴,
∴
.
【点睛】本题主要考查了一次函数和反比例函数的综合应用,求一次函数解析式,反比例函数解析式,解题的关键是数形结合,熟练掌握待定系数法,能求出一次函数和反比例函数的交点坐标.
12.(2023·四川成都·统考中考真题)如图,在平面直角坐标系中,直线与y轴交于点A,与反比例函数的图象的一个交点为,过点B作AB的垂线l.
(1)求点A的坐标及反比例函数的表达式;
(2)若点C在直线l上,且的面积为5,求点C的坐标;
(3)P是直线l上一点,连接PA,以P为位似中心画,使它与位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.
【答案】(1)点A的坐标为,反比例函数的表达式为;(2)点C的坐标为或;(3)点P的坐标为;m的值为3
【分析】(1)利用直线解析式可的点C的坐标,将点代入可得a的值,再将点代入反比例函数解析式可得k的值,从而得解;
(2)设直线l于y轴交于点M,由点B的坐标和直线l是的垂线先求出点M的坐标,再用待定系数法求直线l的解析式,C点坐标为,根据(分别代表点B与点C的横坐标)可得点C的横坐标,从而得解;
(3) 位似图形的对应点与位似中心三点共线可知点B的对应点也在直线l上,不妨设为点E,则点A的对应点是点D,直线l与双曲线的解析式联立方程组得到,由得到,继而得到直线与直线的解析式中的一次项系数相等,设直线的解析式是:,将代入求得的解析式是:,再将直线与双曲线的解析式联立求得,再用待定系数法求出的解析式是,利用直线的解析式与直线l的解析式联立求得点P的坐标为,再用两点间的距离公式得到,从而求得.
【详解】(1)解:令,则
∴点A的坐标为,
将点代入得:
解得:
∴
将点代入得:
解得:
∴反比例函数的表达式为;
(2)解:设直线l于y轴交于点M,直线与x轴得交点为N,
令解得:
∴,
∴,
又∵,
∴
∵,
∴
又∵直线l是的垂线即,,
∴,
∴
设直线l得解析式是:,
将点,点代入得:
解得:
∴直线l的解析式是:,
设点C的坐标是
∵,(分别代表点B与点C的横坐标)
解得: 或6,
当时,;
当时,,
∴点C的坐标为或
(3)∵位似图形的对应点与位似中心三点共线,
∴点B的对应点也在直线l上,不妨设为点E,则点A的对应点是点D,
∴点E是直线l与双曲线的另一个交点,
将直线l与双曲线的解析式联立得:
解得:或
∴
画出图形如下:
又∵
∴
∴
∴直线与直线的解析式中的一次项系数相等,
设直线的解析式是:
将点代入得:
解得:
∴直线的解析式是:
∵点D也在双曲线上,
∴点D是直线与双曲线的另一个交点,
将直线与双曲线的解析式联立得:
解得:或
∴
设直线的解析式是:
将点,代入得:
解得:
∴直线的解析式是:,
又将直线的解析式与直线l的解析式联立得:
解得:
∴点P的坐标为
∴
∴
【点睛】本题考查直线与坐标轴的交点,求反比例函数解析式,反比例函数的图象与性质,反比例函数综合几何问题,三角形的面积公式,位似的性质等知识,综合性大,利用联立方程组求交点和掌握位似的性质是解题的关键.
13.(2023·江西·统考中考真题)如图,已知直线与反比例函数的图象交于点,与y轴交于点B,过点B作x轴的平行线交反比例函数的图象于点C.
(1)求直线和反比例函数图象的表达式;
(2)求的面积.
【答案】(1)直线的表达式为,反比例函数的表达式为;(2)6
【分析】(1)利用待定系数法求函数解析式即可;
(2)由一次函数解析式求得点B的坐标,再根据轴,可得点C的纵坐标为1,再利用反比例函数表达式求得点C坐标,即可求得结果.
【详解】(1)解:∵直线与反比例函数的图象交于点,
∴,,即,
∴直线的表达式为,反比例函数的表达式为.
(2)解:∵直线的图象与y轴交于点B,
∴当时,,
∴,
∵轴,直线与反比例函数的图象交于点C,
∴点C的纵坐标为1,
∴,即,
∴,
∴,
∴.
【点睛】本题考查用待定系数法求一次函数和反比例函数解析式、一次函数与反比例函数的交点、一次函数与y轴的交点,熟练掌握用待定系数法求函数解析式是解题的关键.
14.(2022·四川广元)如图,在平面直角坐标系xOy中,函数y=x+b的图像与函数(x>0)的图像相交于点B(1,6),并与x轴交于点A.点C是线段AB上一点,△OAC与△OAB的面积比为2:3
(1)求k和b的值;(2)若将△OAC绕点O顺时针旋转,使点C的对应点C′落在x轴正半轴上,得到△OA′C′,判断点A′是否在函数(x>0)的图像上,并说明理由.
【答案】(1)b=5,k=6
(2)不在,理由见详解
【分析】(1)把点B的坐标分别代入一次函数与反比例函数解析式进行求解即可;
(2)由(1)及题意易得点C的坐标,然后根据旋转的性质可知点C′的坐标,则根据等积法可得点A′的纵坐标,进而根据三角函数可得点A′的横坐标,最后问题可求解.
(1)解:由题意得:,∴b=5,k=6;
(2)解:点A′不在反比例函数图像上,理由如下:
过点A′作A′E⊥x轴于点E,过点C作CF⊥x轴于点F,如图,
由(1)可知:一次函数解析式为,反比例函数解析式为,∴点,
∵△OAC与△OAB的面积比为2:3,且它们都以OA为底,
∴△OAC与△OAB的面积比即为点C纵坐标与点B纵坐标之比,
∴点C的纵坐标为,∴点C的横坐标为,
∴点C坐标为,∴CF=4,OF=1,
∴,,
由旋转的性质可得:,
根据等积法可得:,
∴,∴,∴,
∴点A′不在反比例函数图像上.
【点睛】本题主要考查反比例函数与一次函数的综合、三角函数及旋转的性质,熟练掌握反比例函数与一次函数的综合、三角函数及旋转的性质是解题的关键.
15.(2021·黑龙江大庆市·中考真题)如图,一次函数的图象与轴的正半轴交于点,与反比例函数的图像交于两点.以为边作正方形,点落在轴的负半轴上,已知的面积与的面积之比为.
(1)求一次函数的表达式:
(2)求点的坐标及外接圆半径的长.
【答案】(1);(2)点的坐标为;外接圆半径的长为
【分析】
(1)过D点作DE∥y轴交x轴于H点,过A点作EF∥x轴交DE于E点,过B作BF∥y轴交EF于F点,证明△ABF≌△DAE,,的面积与的面积之比为得到,进而得到,求出A、D两点坐标即可求解;
(2)联立一次函数与反比例函数解析式即可求出P点坐标;再求出C点坐标,进而求出CP长度,Rt△CPD外接圆的半径即为CP的一半.
【详解】
解:(1)过D点作DE∥y轴交x轴于H点,过A点作EF∥x轴交DE于E点,过B作BF∥y轴交EF于F点,如下图所示:
∵与有公共的底边BO,其面积之比为1:4,
∴DH:OA=1:4,
设,则,
∵ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAF+∠EAD=90°,
∵∠BAF+∠FBA=90°,
∴∠FBA=∠EAD,
在△ABF和△DAE中: ,
∴△ABF≌△DAE(AAS),
∴
又,
∴,解得(负值舍去),
∴,代入中,
∴ ,解得 ,
∴一次函数的表达式为;
(2)联立一次函数与反比例函数解析式: ,
整理得到:,
解得 ,,
∴点的坐标为;D点的坐标为(4,1)
∵四边形ABCD为正方形,
∴,
且,
在中,由勾股定理:,
∴,
又△CPD为直角三角形,其外接圆的圆心位于斜边PC的中点处,
∴△CPD外接圆的半径为.
【点睛】
本题考查了反比例函数与一次函数的综合应用,三角形全等的判定与性质,勾股定理求线段长,本题属于综合题,解题的关键是正确求出点A、D两点坐标.
15.(2021·四川广元市·中考真题)如图,直线与双曲线相交于点A、B,已知点A的横坐标为1,
(1)求直线的解析式及点B的坐标;
(2)以线段为斜边在直线的上方作等腰直角三角形.求经过点C的双曲线的解析式.
【答案】(1)y=-0.5x+2;点B坐标为(3,0.5);(2)过点C的双曲线解析式为.
【分析】
(1)把点A横坐标代入反比例函数解析式,可求出点A坐标,代入可求出直线解析式,联立反比例函数与一次函数解析式即可得点B坐标;
(2)设点C坐标为(m,n),过点C的双曲线解析式为,根据点A、B坐标可求出AB的长,根据等腰直角三角形的性质可得AC=BC=,根据两点间距离个数求出m、n的值即可得点C坐标,代入反比例函数解析式求出k值即可得答案.
【详解】
(1)∵点A在双曲线上,点A的横坐标为1,
∴当x=1时,y=1.5,
∴点A坐标为(1,1.5),
∵直线与双曲线相交于点A、B,
∴k+2=1.5,
解得:k=-0.5,
∴直线的解析式为y=-0.5x+2,
联立反比例函数与一次函数解析式得,
解得:,(舍去),
∴点B坐标为(3,0.5).
(2)设点C坐标为(m,n),过点C的双曲线解析式为,
∵A(1,1.5),B(3,0.5),
∴AB==,
∵△ABC是等腰直角三角形,
∴AC=BC==,
∴,
整理得:,
∴,
解得:,
∴或0(舍去),
∴点C坐标为(,2),
把点C坐标代入双曲线解析式得:,
解得:,
∴过点C的双曲线解析式为.
【点睛】
本题考查反比例函数与一次函数综合,熟练掌握反比例函数图象上的点的坐标特征是解题关键.
17.如图,直线与反比例函数的图象交于A,B两点,已知点A的坐标为,的面积为8.
(1)填空:反比例函数的关系式为_________________;
(2)求直线的函数关系式;
(3)动点P在y轴上运动,当线段与之差最大时,求点P的坐标.
【答案】(1);(2);(3)
【解析】
【分析】
(1)把点代入解析式,即可得到结果;
(2)过点A作轴于点C,过点B作轴于点D,交于点E,则四边形为矩形,设点B的坐标为,表示出△ABE的面积,根据△AOB得面积可得,得到点B的坐标,代入即可的到解析式;
(3)根据“三角形两边之差小于第三边”可知,当点P为直线与y轴的交点时,有最大值为,代入即可求值.
【详解】
解:(1)把点代入可得,
∴反比例函数的解析式为;
(2)如图,过点A作轴于点C,过点B作轴于点D,交于点E,则四边形为矩形.
设点B的坐标为,∴.
∵点A的坐标为,
∴.
∴.
∵A,B两点均在双曲线上,
∴.
∴
.
∵的面积为8,
∴,整理得.
∴.解得(舍去).
∴.∴点B的坐标为.
设直线的函数关系式为,
则.解得.
∴直线的函数关系式为.
(3)如上图,根据“三角形两边之差小于第三边”可知,
当点P为直线与y轴的交点时,有最大值为,
把代入,得.
∴点P的坐标为.
【点睛】
本题主要考查了反比例函数与一次函数的综合,准确分析题意是解题的关键.
18.已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,.
(1)求反比例函数的解析式;
(2)当时,求点C的坐标.
【答案】(1);(2)点C的坐标为
【解析】
【分析】
(1)过点B作轴于点M,由设BM=x,MO=2x,由勾股定理求出x的值,得到点B的坐标,代入即可求解;
(2)设点C的坐标为,则.设直线AB的解析式为:,将B点坐标代入AB的函数关系式,可得,令y=0得到,令,解得两个x的值,A点的横坐标为,由列出方程求解即可.
【详解】
解:(1)过点B作轴于点M,则
在中.
设,则.
又.
.
又
,
∴点B的坐标是
∴反比例的解析式为.
(2)设点C的坐标为,则.设直线AB的解析式为:.
又∵点在直线AB上将点B的坐标代入直线解析式中,
.
.
∴直线AB的解析式为:.
令,则.
.
令,解得.
经检验都是原方程的解.
又.
.
.
.
.
经检验,是原方程的解.
∴点C的坐标为.
【点睛】
本题考查反比例函数与一次函数综合、分式方程、一元二次方程和解直角三角形,解题的关键是熟练掌握反比例函数的图象和性质.
19.如图所示,一次函数的图象与反比例函数的图象交于.
(1)求反比例函数和一次函数的解析式;
(2)在x轴上存在一点C,使为等腰三角形,求此时点C的坐标;
(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.
【答案】(1),;(2),,,;(3)-12
相关试卷
这是一份专题16 反比例函数与几何图形综合题(与面积、其他有关)-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题16反比例函数与几何图形综合题与面积其他有关原卷版docx、专题16反比例函数与几何图形综合题与面积其他有关解析版docx等2份试卷配套教学资源,其中试卷共91页, 欢迎下载使用。
这是一份专题23 二次函数与几何图形综合题(与特殊四边形有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题23二次函数与几何图形综合题与特殊四边形有关问题原卷版docx、专题23二次函数与几何图形综合题与特殊四边形有关问题解析版docx等2份试卷配套教学资源,其中试卷共100页, 欢迎下载使用。
这是一份专题21 二次函数与几何图形综合题(与特殊三角形问题)-备战2024年中考数学重难题型(全国通用),文件包含专题21二次函数与几何图形综合题与特殊三角形问题原卷版docx、专题21二次函数与几何图形综合题与特殊三角形问题解析版docx等2份试卷配套教学资源,其中试卷共94页, 欢迎下载使用。