年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题29 综合与实践-备战2024年中考数学一轮复习重难题型(全国通用)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题29 综合与实践(原卷版).docx
    • 解析
      专题29 综合与实践(解析版).docx
    专题29 综合与实践(原卷版)第1页
    专题29 综合与实践(原卷版)第2页
    专题29 综合与实践(原卷版)第3页
    专题29 综合与实践(解析版)第1页
    专题29 综合与实践(解析版)第2页
    专题29 综合与实践(解析版)第3页
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题29 综合与实践-备战2024年中考数学一轮复习重难题型(全国通用)

    展开

    这是一份专题29 综合与实践-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题29综合与实践原卷版docx、专题29综合与实践解析版docx等2份试卷配套教学资源,其中试卷共128页, 欢迎下载使用。
    2、学会运用数形结合思想。数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
    3、要学会抢得分点。一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
    4、学会运用等价转换思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
    5、学会运用分类讨论的思想。如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
    6、转化思想:体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
    专题29综合与实践
    1.(2023·浙江绍兴·统考中考真题)在平行四边形中(顶点按逆时针方向排列),为锐角,且.

    (1)如图1,求边上的高的长.
    (2)是边上的一动点,点同时绕点按逆时针方向旋转得点.
    ①如图2,当点落在射线上时,求的长.
    ②当是直角三角形时,求的长.
    2.(2023·甘肃武威·统考中考真题)【模型建立】
    (1)如图1,和都是等边三角形,点关于的对称点在边上.
    ①求证:;
    ②用等式写出线段,,的数量关系,并说明理由.
    【模型应用】
    (2)如图2,是直角三角形,,,垂足为,点关于的对称点在边上.用等式写出线段,,的数量关系,并说明理由.
    【模型迁移】
    (3)在(2)的条件下,若,,求的值.

    3.(2023·江西·统考中考真题)课本再现
    (1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.
    己知:在中,对角线,垂足为.
    求证:是菱形.

    (2)知识应用:如图,在中,对角线和相交于点,.

    ①求证:是菱形;
    ②延长至点,连接交于点,若,求的值.
    4.(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.
    (1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)
    当的三个内角均小于时,
    如图1,将绕,点C顺时针旋转得到,连接,

    由,可知为 ① 三角形,故,又,故,
    由 ② 可知,当B,P,,A在同一条直线上时,取最小值,如图2,最小值为,此时的P点为该三角形的“费马点”,且有 ③ ;
    已知当有一个内角大于或等于时,“费马点”为该三角形的某个顶点.如图3,若,则该三角形的“费马点”为 ④ 点.
    (2)如图4,在中,三个内角均小于,且,已知点P为的“费马点”,求的值;

    (3)如图5,设村庄A,B,C的连线构成一个三角形,且已知.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/,a元/,元/,选取合适的P的位置,可以使总的铺设成本最低为___________元.(结果用含a的式子表示)
    5.(2023·山东枣庄·统考中考真题)问题情境:如图1,在中,,是边上的中线.如图2,将的两个顶点B,C分别沿折叠后均与点D重合,折痕分别交于点E,G,F,H.

    猜想证明:
    (1)如图2,试判断四边形的形状,并说明理由.
    问题解决;
    (2)如图3,将图2中左侧折叠的三角形展开后,重新沿折叠,使得顶点B与点H重合,折痕分别交于点M,N,的对应线段交于点K,求四边形的面积.
    6.(重庆中考真题)在中,,是边上一动点,连接,将绕点逆时针旋转至的位置,使得.
    (1)如图,当时,连接,交于点.若平分,,求的长;
    (2)如图,连接,取的中点,连接.猜想与存在的数量关系,并证明你的猜想;
    (3)如图,在(2)的条件下,连接,.若,当,时,请直接写出的值.
    7.(2023·湖南·统考中考真题)(1)[问题探究]
    如图1,在正方形中,对角线相交于点O.在线段上任取一点P(端点除外),连接.

    ①求证:;
    ②将线段绕点P逆时针旋转,使点D落在的延长线上的点Q处.当点P在线段上的位置发生变化时,的大小是否发生变化?请说明理由;
    ③探究与的数量关系,并说明理由.
    (2)[迁移探究]
    如图2,将正方形换成菱形,且,其他条件不变.试探究与的数量关系,并说明理由.

    8.(2023·湖南岳阳·统考中考真题)如图1,在中,,点分别为边的中点,连接.
    初步尝试:(1)与的数量关系是_________,与的位置关系是_________.
    特例研讨:(2)如图2,若,先将绕点顺时针旋转(为锐角),得到,当点在同一直线上时,与相交于点,连接.

    (1)求的度数;
    (2)求的长.
    深入探究:(3)若,将绕点顺时针旋转,得到,连接,.当旋转角满足,点在同一直线上时,利用所提供的备用图探究与的数量关系,并说明理由.
    9.(2023·湖北黄冈·统考中考真题)【问题呈现】
    和都是直角三角形,,连接,,探究,的位置关系.

    (1)如图1,当时,直接写出,的位置关系:____________;
    (2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.
    【拓展应用】
    (3)当时,将绕点C旋转,使三点恰好在同一直线上,求的长.
    10.(2023·河北·统考中考真题)如图1和图2,平面上,四边形中,,点在边上,且.将线段绕点顺时针旋转到的平分线所在直线交折线于点,设点在该折线上运动的路径长为,连接.

    (1)若点在上,求证:;
    (2)如图2.连接.
    ①求的度数,并直接写出当时,的值;
    ②若点到的距离为,求的值;
    (3)当时,请直接写出点到直线的距离.(用含的式子表示).
    11.(2023·湖南郴州·统考中考真题)已知是等边三角形,点是射线上的一个动点,延长至点,使,连接交射线于点.

    (1)如图1,当点在线段上时,猜测线段与的数量关系并说明理由;
    (2)如图2,当点在线段的延长线上时,
    ①线段与的数量关系是否仍然成立?请说明理由;
    ②如图3,连接.设,若,求四边形的面积.
    12.(2023·湖北武汉·统考中考真题)问题提出:如图(1),是菱形边上一点,是等腰三角形,,交于点,探究与的数量关系.

    问题探究:
    (1)先将问题特殊化,如图(2),当时,直接写出的大小;
    (2)再探究一般情形,如图(1),求与的数量关系.
    问题拓展:
    (3)将图(1)特殊化,如图(3),当时,若,求的值.
    13.(2023·山西·统考中考真题)问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为和,其中.将和按图2所示方式摆放,其中点与点重合(标记为点).当时,延长交于点.试判断四边形的形状,并说明理由.

    (1)数学思考:谈你解答老师提出的问题;
    (2)深入探究:老师将图2中的绕点逆时针方向旋转,使点落在内部,并让同学们提出新的问题.

    ①“善思小组”提出问题:如图3,当时,过点作交的延长线于点与交于点.试猜想线段和的数量关系,并加以证明.请你解答此问题;

    ②“智慧小组”提出问题:如图4,当时,过点作于点,若,求的长.请你思考此问题,直接写出结果.

    14.(2023·辽宁大连·统考中考真题)综合与实践
    问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.
    已知,点为上一动点,将以为对称轴翻折.同学们经过思考后进行如下探究:
    独立思考:小明:“当点落在上时,.”
    小红:“若点为中点,给出与的长,就可求出的长.”
    实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:

    问题1:在等腰中,由翻折得到.
    (1)如图1,当点落在上时,求证:;
    (2)如图2,若点为中点,,求的长.
    问题解决:小明经过探究发现:若将问题1中的等腰三角形换成的等腰三角形,可以将问题进一步拓展.
    问题2:如图3,在等腰中,.若,则求的长.
    15.(2023·广西·统考中考真题)【探究与证明】
    折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.
    【动手操作】如图1,将矩形纸片对折,使与重合,展平纸片,得到折痕;折叠纸片,使点B落在上,并使折痕经过点A,得到折痕,点B,E的对应点分别为,,展平纸片,连接,,.

    请完成:
    (1)观察图1中,和,试猜想这三个角的大小关系;
    (2)证明(1)中的猜想;
    【类比操作】如图2,N为矩形纸片的边上的一点,连接,在上取一点P,折叠纸片,使B,P两点重合,展平纸片,得到折痕;折叠纸片,使点B,P分别落在,上,得到折痕l,点B,P的对应点分别为,,展平纸片,连接,.

    请完成:
    (3)证明是的一条三等分线.
    16.(湖南中考真题)如图,在中,点为斜边上一动点,将沿直线折叠,使得点的对应点为,连接,,,.
    (1)如图①,若,证明:.
    (2)如图②,若,,求的值.
    (3)如图③,若,是否存在点,使得.若存在,求此时的值;若不存在,请说明理由.
    17.(江苏中考真题)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.
    (1)如图①,连接BG、CF,求的值;
    (2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别去CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;
    (3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.
    18.问题提出:
    (1)在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D,过点D分别作DE⊥AC,DF⊥BC,垂足分别E、F,在图1中与线段CE相等的线段是 ;
    问题探究:
    (2)如图2,AB是半圆O的直径,AB=8,P是上一点,且=2,连接PA,PB,∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E、F,求线段CF的长;
    问题解决:
    如图3,是某公园内“少儿活动中心”的设计示意图,已知⊙O的直径AB=70m,点C在上,且CA=CB.P为AB上一点,连接CP并延长,交于点D,连接AD、BD,过点P分别作PE⊥AD,PF⊥BD,垂足分别为E、F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2) .
    ①求y关于x之间的函数关系式;
    ②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时,室内活动区(四边形PEDF)的面积.

    图1 图2 图3
    19.(2019•陕西)问题提出:
    (1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;
    问题探究:
    (2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使
    ∠BPC=90°,求满足条件的点P到点A的距离;
    问题解决:
    (3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
    20.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积,,之间的关系问题”进行了以下探究:
    类比探究
    (1)如图2,在中,为斜边,分别以为斜边向外侧作,,,若,则面积,,之间的关系式为 ;
    推广验证
    (2)如图3,在中,为斜边,分别以为边向外侧作任意,,,满足,,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;
    拓展应用
    (3)如图4,在五边形中,,,,,点在上,,,求五边形的面积.
    21.【学习概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.
    【理解运用】
    (1)如图1,对余四边形中,AB=5,BC=6,CD=4,连接AC,若AC=AB,求sin∠CAD的值.
    (2)如图2,凸四边形中,AD=BD,AB⊥AC,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形,证明你的结论.
    【拓展提升】在平面直角坐标中,A(-1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC,设 =u,点D的纵坐标为t,请直接写出u与t的函数解析式.
    A
    B
    C
    D
    D
    A
    B
    C
    22.【性质探究】
    如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.
    (1)判断△AFG的形状并说明理由;
    (2)求证:BF=2OG.
    【迁移应用】
    (3)记△DGO的面积为S1,△DBF的面积为S2,当时,求的值;
    【拓展延伸】
    (4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.
    23.【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°.求证:.
    【探究】如图②,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,当点F在AD延长线上,∠FEG=∠AEB=90°,且,连接BG交CD于点H.求证:BH=GH.
    【拓展】如图③,点E在四边形ABCD内,∠AEB+∠DEC=180°,且,过E作EF交AD于点F,使∠EFA=∠AEB,延长FE交BC于点G,求证:BG=CG.
    24.小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC﹦∠CDE﹦90°,连接BD,AB﹦BD,点F是线段CE上一点.
    探究发现:
    (1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?___________.(填“是”或“否”)
    拓展延伸:
    (2)将(1)中的条件与结论互换,即:若BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
    问题解决:
    (3)若AB=6,CE=9,求AD的长.
    图(1) 图(2) 备用图

    25.在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA.AE交BC于点F,连接CE.
    (1)特例发现:如图1,当AD=AF时,①求证:BD=CF;②推断:∠ACE=_____°;
    (2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;
    (3)拓展运用:如图3,在(2)的条件下,当时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=时,求DF的长.

    26.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB,AC上,AD=AE,连接BE,点M,N,P分别为DE,BE,BC的中点.
    (1)观察猜想:
    图1中,线段MN与NP的数量关系是 ,∠MNP的大小是 ;
    (2)探究证明:
    把∆ADE绕点A顺时针方向旋转到图2的位置,连接MP、BD、CE,判断∆MNP的形状,试说明理由;
    (3)拓展延伸:
    把∆ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出∆MNP面积的最大值.
    图1 图2
    27.问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;
    尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F.点D在BC边上,=,求的值;
    拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=,直接写出AD的长.
    (1) (2) (3)
    28.已知:是等腰直角三角形,,将绕点顺时针方向旋转得到△,记旋转角为,当时,作,垂足为,与交于点.
    (1)如图1,当时,作的平分线交于点.
    ①写出旋转角的度数;
    ②求证:;
    (2)如图2,在(1)的条件下,设是直线上的一个动点,连接,,若,求线段的最小值.(结果保留根号).
    29.问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.
    小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是 ;
    探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;
    探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;
    实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.
    30.发现规律
    (1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.
    (2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.
    应用结论
    (3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.
    31.(2021·山西中考真题)综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在中,,垂足为,为的中点,连接,,试猜想与的数量关系,并加以证明;
    独立思考:(1)请解答老师提出的问题;
    实践探究:(2)希望小组受此问题的启发,将沿着(为的中点)所在直线折叠,如图②,点的对应点为,连接并延长交于点,请判断与的数量关系,并加以证明;
    问题解决:(3)智慧小组突发奇想,将沿过点的直线折叠,如图③,点A的对应点为,使于点,折痕交于点,连接,交于点.该小组提出一个问题:若此的面积为20,边长,,求图中阴影部分(四边形)的面积.请你思考此问题,直接写出结果.
    32.(1)问题发现:如图(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=36°,连接AC,BD交于点M.①的值为 ;②∠AMB的度数为 ;
    (2)类比探究 :如图(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算的值及∠AMB的度数.
    (3)拓展延伸:在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M.若OD=1,OB=,请直接写出当点C与点M重合时AC的长.
    33.综合与实践
    (1)观察理解:如图1,中,,,直线过点,点,在直线同侧,,,垂足分别为,,由此可得:,所以,又因为,所以,所以,又因为,所以( );(请填写全等判定的方法)
    (2)理解应用:如图2,,且,,且,利用(1)中的结论,请按照图中所标注的数据计算图中实线所围成的图形的面积______;
    (3)类比探究:如图3,中,,,将斜边绕点逆时针旋转至,连接,求的面积.
    (4)拓展提升:如图4,点,在的边、上,点,在内部的射线上,、分别是、的外角.已知,.求证:;
    34.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β
    (1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;
    (2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;
    (3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.
    思考
    我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?
    可以发现并证明菱形的一个判定定理;
    对角线互相垂直的平行四边形是菱形.

    相关试卷

    专题28 圆的综合探究-备战2024年中考数学一轮复习重难题型(全国通用):

    这是一份专题28 圆的综合探究-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题28圆的综合探究原卷版docx、专题28圆的综合探究解析版docx等2份试卷配套教学资源,其中试卷共77页, 欢迎下载使用。

    专题17 二次函数性质综合-备战2024年中考数学一轮复习重难题型(全国通用):

    这是一份专题17 二次函数性质综合-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题17二次函数性质综合原卷版docx、专题17二次函数性质综合解析版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。

    专题14 反比例函数性质综合-备战2024年中考数学一轮复习重难题型(全国通用):

    这是一份专题14 反比例函数性质综合-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题14反比例函数性质综合原卷版docx、专题14反比例函数性质综合解析版docx等2份试卷配套教学资源,其中试卷共86页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map