还剩6页未读,
继续阅读
6.5一次函数的应用(1)课件PPT
展开
6.5 一次函数的应用(1)1、有哪些方法可以反映两个变量之间的关系?2、已知两点的坐标如何确定一次函数的表达式3、已知一次函数的表达式,如何画出它的图象忆一忆由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间T(天)与蓄水量V(万米 )的关系如图所示,回答下列问题: 10 20 30 40 50 t / 天O(1)干旱持续10天,蓄水量为多少?连续干旱23天呢?(2)蓄水量小于400万米 时,将发出严重干旱警报.干旱多少天后将发出严重干旱警报?(3)按照这个规律,预计持续干旱多少天水库将干涸?某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量Y(升)与摩托车行驶路程X(千米)之间的关系如图所示。根据图像回答下列问题:一箱汽油可供摩托车行驶多少千米?摩托车每行驶100千米消耗多少升汽油?油箱中的剩余油量小于1升时,摩托车将自动报警?100 200 300 400 500 X/千米O解法1:观察图像,得当Y=0时,X=500.一次一箱汽油可供摩托车行驶500千米.X从0增加到100时,Y从10减少到8,减少了2,因此摩托车每行驶100千米消耗2升汽油.当Y=1时,X=450,因此行驶了450千米后,摩托车将自动报警.100 200 300 400 500 X/千米O你会这样做吗?解法:设y=kx+b,把(0,10)(500,0)代入上式 (1) 将y=0代入上式 解得 x=500(2) 将x=100代入上式 解得 y=8 10-8=2(3)将y=1代入上式 解得 x=450x=____-220131、看图填空:123-1-2-3-1-2-3(1)当y=0时,(2)当x=0时,y=____xy练一练19练一练631215182124y/cml2468101214t/天某植物t天后的高度为ycm,图中的l 反映了y与t之间的关系,根据图象回答下列问题:(1)植物刚栽的时候多高?2)3天后该植物高度为多少?3)几天后该植物高度可达21cm?(4)先写出y与t的关系式,再计算长到100cm需几天? 一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系? 从上面的例题和练习不难得出下面的答案:1、从“数”的方面看,当一次函数y=0.5x+1的因变量的值为0时,相应的自变量的值即为方程0.5x+1=0的解.2、从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标,即为方程0.5x+1=0的解.2013123-1-2-3-1-2-3xy议一议2、本节课主要运用什么方法来解决一些简单的实际问题?1、经过本节课的学习,你有哪些收获?小 结
相关资料
更多