还剩5页未读,
继续阅读
成套系列资料,整套一键下载
2024八下第21章一次函数阶段方法技巧训练二专训1一次函数的两种常见应用(冀教版)
展开
这是一份2024八下第21章一次函数阶段方法技巧训练二专训1一次函数的两种常见应用(冀教版),共8页。
专训1 一次函数的两种常见应用名师点金:一次函数的两种常见应用主要体现在解决实际问题和几何问题上.能够从函数图像中得到需要的信息,并求出函数表达式从而解决实际问题和几何问题,是一次函数应用价值的体现,这种题型常与一些热点问题结合,考查学生综合分析问题、解决问题的能力. 利用一次函数解决实际问题eq \a\vs4\al(题型1) 行程问题(第1题)1.【中考·鄂州】甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论:①A,B两城相距300 km;②乙车比甲车晚出发1 h,却早到1 h;③乙车出发后2.5 h追上甲车;④当甲、乙两车相距50 km时,t=eq \f(5,4)或eq \f(15,4).其中正确的结论有( )A.1个 B.2个 C.3个 D.4个2.甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图像,解答下列问题:(1)线段CD表示轿车在途中停留了________h;(2)求线段DE对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.(第2题)eq \a\vs4\al(题型2) 工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?【导学号:54274014】(第3题)eq \a\vs4\al(题型3) 实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3 g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4 g且不超过10 g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10 t以内(包括10 t)的用户,每吨收水费a元;一个月用水超过10 t的用户,10 t水仍按每吨a元收费,超过10 t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8 t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.(第5题) 利用一次函数解决几何问题eq \a\vs4\al(题型4) 利用图像解几何问题6.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图像如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数表达式;(3)当t为何值时,△APD的面积为10 cm2?(第6题)eq \a\vs4\al(题型5) 利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)【导学号:54274015】(1)写出y与x之间的函数表达式;(2)画出此函数的图像.(第7题)答案1.B2.解:(1)0.5(2)设线段DE对应的函数表达式为y=kx+b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y=kx+b可得eq \b\lc\{(\a\vs4\al\co1(80=2.5k+b,,300=4.5k+b.))解得eq \b\lc\{(\a\vs4\al\co1(k=110,,b=-195.))所以y=110x-195(2.5≤x≤4.5).(3)设线段OA对应的函数表达式为y=k1x(0≤x≤5).将A(5,300)的坐标代入y=k1x可得300=5k1,解得k1=60.所以y=60x(0≤x≤5).令60x=110x-195,解得x=3.9.故轿车从甲地出发后经过3.9-1=2.9(h)追上货车.3.解:(1)设甲组加工零件的数量y与时间x之间的函数表达式为y=kx,因为当x=6时,y=360,所以k=60,即甲组加工零件的数量y与时间x之间的函数表达式为y=60x(0≤x≤6).(2)a=100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8 h时共加工零件100+60×2.8=268(件), 所以装满第1箱的时刻在2.8 h后.设经过x1 h恰好装满第1箱.则60x1+100÷2×2(x1-2.8)+100=300,解得x1=3.从x=3到x=4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件), 所以x>4.8时,才能装满第2箱,此时只有甲组继续加工.设装满第1箱后再经过x2 h装满第2箱.则60x2+(4.8-3)×100÷2×2=300,解得x2=2.故经过3 h恰好装满第1箱,再经过2 h恰好装满第2箱.4.解:(1)y甲=477x,y乙=eq \b\lc\{(\a\vs4\al\co1(530x(0≤x≤3),,424x+318(x>3).)) (2)当477x=424x+318时,解得x=6,即当x=6时,到甲、乙两个商场购买所需费用相同;当477x<424x+318时,解得x<6,又x≥4,于是当4≤x<6时,到甲商场购买合算;当477x>424x+318时,解得x>6,又x≤10,于是当6<x≤10时,到乙商场购买合算.5.解:(1)当x≤10时,由题意知y=ax.将x=10,y=15代入,得15=10a,所以a=1.5.故当x≤10时,y=1.5x.当x=8时,y=1.5×8=12.故应交水费12元.(2)当x>10时,由题意知y=b(x-10)+15.将x=20,y=35代入,得35=10b+15,所以b=2.故当x>10时,y与x之间的函数表达式为y=2x-5.点拨:本题解题的关键是从图像中找出有用的信息,用待定系数法求出表达式,再解决问题.6.解:(1)6;2;18(2)PD=6-2(t-12)=30-2t,S=eq \f(1,2)AD·PD=eq \f(1,2)×6×(30-2t)=90-6t,即点P在CD上运动时S与t之间的函数表达式为S=90-6t(12≤t≤15).(3)当0≤t≤6时易求得S=3t,将S=10代入,得3t=10,解得t=eq \f(10,3);当12≤t≤15时,S=90-6t,将S=10代入,得90-6t=10,解得t=eq \f(40,3).所以当t为eq \f(10,3)或eq \f(40,3)时,△APD的面积为10 cm2.7.解:(1)点P在边AB,BC,CD上运动时所对应的y与x之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P在边AB上运动,即0≤x<3时,y=eq \f(1,2)×4x=2x;②当点P在边BC上运动,即3≤x<7时,y=eq \f(1,2)×4×3=6;③当点P在边CD上运动,即7≤x≤10时,y=eq \f(1,2)×4(10-x)=-2x+20.所以y与x之间的函数表达式为y=eq \b\lc\{(\a\vs4\al\co1(2x (0≤x<3),,6 (3≤x<7),,-2x+20 (7≤x≤10).))(2)函数图像如图所示.(第7题)点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P在边AB,BC,CD上运动时所对应的y与x之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图像.
专训1 一次函数的两种常见应用名师点金:一次函数的两种常见应用主要体现在解决实际问题和几何问题上.能够从函数图像中得到需要的信息,并求出函数表达式从而解决实际问题和几何问题,是一次函数应用价值的体现,这种题型常与一些热点问题结合,考查学生综合分析问题、解决问题的能力. 利用一次函数解决实际问题eq \a\vs4\al(题型1) 行程问题(第1题)1.【中考·鄂州】甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论:①A,B两城相距300 km;②乙车比甲车晚出发1 h,却早到1 h;③乙车出发后2.5 h追上甲车;④当甲、乙两车相距50 km时,t=eq \f(5,4)或eq \f(15,4).其中正确的结论有( )A.1个 B.2个 C.3个 D.4个2.甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图像,解答下列问题:(1)线段CD表示轿车在途中停留了________h;(2)求线段DE对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.(第2题)eq \a\vs4\al(题型2) 工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?【导学号:54274014】(第3题)eq \a\vs4\al(题型3) 实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3 g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4 g且不超过10 g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10 t以内(包括10 t)的用户,每吨收水费a元;一个月用水超过10 t的用户,10 t水仍按每吨a元收费,超过10 t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8 t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.(第5题) 利用一次函数解决几何问题eq \a\vs4\al(题型4) 利用图像解几何问题6.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图像如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数表达式;(3)当t为何值时,△APD的面积为10 cm2?(第6题)eq \a\vs4\al(题型5) 利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)【导学号:54274015】(1)写出y与x之间的函数表达式;(2)画出此函数的图像.(第7题)答案1.B2.解:(1)0.5(2)设线段DE对应的函数表达式为y=kx+b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y=kx+b可得eq \b\lc\{(\a\vs4\al\co1(80=2.5k+b,,300=4.5k+b.))解得eq \b\lc\{(\a\vs4\al\co1(k=110,,b=-195.))所以y=110x-195(2.5≤x≤4.5).(3)设线段OA对应的函数表达式为y=k1x(0≤x≤5).将A(5,300)的坐标代入y=k1x可得300=5k1,解得k1=60.所以y=60x(0≤x≤5).令60x=110x-195,解得x=3.9.故轿车从甲地出发后经过3.9-1=2.9(h)追上货车.3.解:(1)设甲组加工零件的数量y与时间x之间的函数表达式为y=kx,因为当x=6时,y=360,所以k=60,即甲组加工零件的数量y与时间x之间的函数表达式为y=60x(0≤x≤6).(2)a=100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8 h时共加工零件100+60×2.8=268(件), 所以装满第1箱的时刻在2.8 h后.设经过x1 h恰好装满第1箱.则60x1+100÷2×2(x1-2.8)+100=300,解得x1=3.从x=3到x=4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件), 所以x>4.8时,才能装满第2箱,此时只有甲组继续加工.设装满第1箱后再经过x2 h装满第2箱.则60x2+(4.8-3)×100÷2×2=300,解得x2=2.故经过3 h恰好装满第1箱,再经过2 h恰好装满第2箱.4.解:(1)y甲=477x,y乙=eq \b\lc\{(\a\vs4\al\co1(530x(0≤x≤3),,424x+318(x>3).)) (2)当477x=424x+318时,解得x=6,即当x=6时,到甲、乙两个商场购买所需费用相同;当477x<424x+318时,解得x<6,又x≥4,于是当4≤x<6时,到甲商场购买合算;当477x>424x+318时,解得x>6,又x≤10,于是当6<x≤10时,到乙商场购买合算.5.解:(1)当x≤10时,由题意知y=ax.将x=10,y=15代入,得15=10a,所以a=1.5.故当x≤10时,y=1.5x.当x=8时,y=1.5×8=12.故应交水费12元.(2)当x>10时,由题意知y=b(x-10)+15.将x=20,y=35代入,得35=10b+15,所以b=2.故当x>10时,y与x之间的函数表达式为y=2x-5.点拨:本题解题的关键是从图像中找出有用的信息,用待定系数法求出表达式,再解决问题.6.解:(1)6;2;18(2)PD=6-2(t-12)=30-2t,S=eq \f(1,2)AD·PD=eq \f(1,2)×6×(30-2t)=90-6t,即点P在CD上运动时S与t之间的函数表达式为S=90-6t(12≤t≤15).(3)当0≤t≤6时易求得S=3t,将S=10代入,得3t=10,解得t=eq \f(10,3);当12≤t≤15时,S=90-6t,将S=10代入,得90-6t=10,解得t=eq \f(40,3).所以当t为eq \f(10,3)或eq \f(40,3)时,△APD的面积为10 cm2.7.解:(1)点P在边AB,BC,CD上运动时所对应的y与x之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P在边AB上运动,即0≤x<3时,y=eq \f(1,2)×4x=2x;②当点P在边BC上运动,即3≤x<7时,y=eq \f(1,2)×4×3=6;③当点P在边CD上运动,即7≤x≤10时,y=eq \f(1,2)×4(10-x)=-2x+20.所以y与x之间的函数表达式为y=eq \b\lc\{(\a\vs4\al\co1(2x (0≤x<3),,6 (3≤x<7),,-2x+20 (7≤x≤10).))(2)函数图像如图所示.(第7题)点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P在边AB,BC,CD上运动时所对应的y与x之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图像.
相关资料
更多