|教案下载
搜索
    上传资料 赚现金
    17.2 勾股定理的逆定理教案01
    17.2 勾股定理的逆定理教案02
    还剩2页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版17.2 勾股定理的逆定理教学设计

    展开
    这是一份人教版17.2 勾股定理的逆定理教学设计,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明等内容,欢迎下载使用。

    【知识与技能】
    1.理解勾股定理的逆定理的证明方法,能证明勾股定理的逆定理.
    2.能用勾股定理的逆定理判别一个三角形是否是直角三角形,并能用它解决实际问题.
    【过程与方法】
    在探索勾股定理的逆定理及其证明方法和运用勾股定理逆定理解决具体问题的过程中,进一步体验数形结合的思想,增强分析问题、解决问题的能力.
    【情感态度】
    1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系;
    2.进一步增强与他人交流合作的意识和探究精神.
    【教学重点】
    勾股定理的逆定理及其应用.
    【教学难点】
    勾股定理的逆定理的证明.
    一、情境导入,初步认识
    问题 (1)勾股定理的内容是怎样的?
    (2)求以线段a,b为直角边的直角三角形的斜边c的长:
    ①a=3,b=4; ②a=2.5,b=6; ③a=4,b=7.5.
    (3)想一想:分别以(2)中a、b、c为三边的三角形的形状会是怎样的?
    【教学说明】教师提出问题后,学生自主探究,相互交流获得结论,最后教师针对问题(2)、(3)提醒学生注意它们各自特征,其中(2)是由形获得数量关系,而(3)是由数量关系得到形的特征,为勾股定理的逆定理的引入作铺垫.
    二、思考探究,获取新知
    探究1 画出三边长分别为3cm、4cm和5cm,2.5cm、6cm和6.5cm,4cm、7.5cm和8.5cm的三个三角形,用量角器测出较大角的度数,你有什么发现?你能解释其原因吗?
    【教学说明】将全班同学分成三个小组,分别画出上述三个三角形,然后相互交流,教师巡视,指导并帮助有困难同学画出尽可能准确的图形,从而形成对勾股定理的逆定理的感性认识.
    猜想 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
    探究2 (1)三边长分别为3,4,5的三角形与以3,4为直角边的直角三角形的三边关系如何?你是怎样得到的?简要说明理由.
    (2)你能否受(1)启发,说明分别以2.5cm、6cm、6.5cm和4cm、7.5cm、8.5cm为三边长的三角形也是直角三角形呢?
    (3)如图,若△ABC的三边a、b、c满足a2+b2=c2,试证明△ABC是直角三角形,请简要地写出证明过程.
    【教学说明】教师应引导学生利用问题(1)、(2)的思路完成问题(3)的证明,得出勾股定理的逆定理,在这期间,教师顺势给出原命题、逆命题、逆定理的概念,最后师生共同给出逆定理的证明过程,在黑板上展示(也可通过多媒体展示),从而帮助学生获得正确认知.
    证明:如图,画Rt△A′C′B′,使A′C′=b,B′C′=a,∠A′C′B′=90°.
    ∴在Rt△A′C′B′中,有A′B′2=B′C′2+A′C′2=a2+b2.
    又a2+b2=c2,∴A′B′2=c2,∴A′B′=c.∴△ABC≌△A′B′C′,
    ∴∠ACB=∠A′C′B′=90°,即△ABC是直角三角形.
    三、典例精析,掌握新知
    例1 判断由线段a,b,c组成的三角形是不是直角三角形:
    (1)a=15,b=8,c=17; (2)a=13,b=14,c=15.
    【教学说明】本例可由学生自己独立完成,教师巡视指导,应关注学生是否是利用两短边的平方和与最长边的平方进行比较.
    例2 某港口位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
    【分析】由题意,可画出示意图如图所示,
    易知PQ=16×=24,PR=12×=18,
    又RQ=30.∵242+182=576+324=900,RQ2=900,
    ∴PR2+PQ2=RQ2,故以P、Q、R为顶点的三角形是直角三角形,由“远航”号沿东北方向航行,故易知“海天”号沿西北方向航行.
    例3 说出下列命题的逆命题,这些命题的逆命题成立吗?
    (1)两条直线平行,内错角相等;
    (2)如果两个实数相等,那么它们的绝对值相等.
    【分析】如果一个命题的题设和结论是另一个命题的结论和题设,那么这两个命题是互逆命题,从而可得(1)、(2)的逆命题分别为“内错角相等,两直线平行”,“如果两个实数的绝对值相等,那么这两个数相等”,且(1)中的逆命题是真命题,(2)中的逆命题是假命题.
    四、运用新知,深化理解
    1.如果三条线段a、b、c满足a2=c2-b2,这三条线段组成的三角形是不是直角三角形?为什么?2.说出下列命题的逆命题,这些命题的逆命题成立吗?
    (1)全等三角形的对应角相等;
    (2)角的内部到角的两边距离相等的点在角的平分线上.
    【教学说明】学生自主探究,寻求结论,教师巡视,及时指导,让学生在练习过程中加深对知识的领悟.
    【答案】1.是直角三角形,由勾股定理的逆定理可得.
    2.(1)逆命题为对应角相等的三角形全等,该逆命题不成立.
    (2)逆命题为角平分线上的点到角的两边距离相等.该逆命题成立.
    五、师生互动,课堂小结
    谈谈这节课你的收获有哪些?还有哪些疑问?与同伴交流.
    1.布置作业:从教材“习题17.2”中选取.
    2.完成练习册中本课时练习.
    本课时的教学目标是在掌握了勾股定理的基础上,让学生如何从三边的关系来判定一个三角形是否为直角三角形,即“勾股定理的逆定理”.由于学生对此在理解上可能有些困难,因此教学时可以实行分层教学,让不同水平的学生在同一课堂都能学好,为此,可设计三个层次的问题,以达到分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理的基本运用;第二层次是强调已知三角形三边长或三边关系,再判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理及其逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.教案中设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握,让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正体现学生是学习的主人.
    相关教案

    人教版八年级下册17.2 勾股定理的逆定理教案及反思: 这是一份人教版八年级下册<a href="/sx/tb_c10262_t8/?tag_id=27" target="_blank">17.2 勾股定理的逆定理教案及反思</a>,共6页。教案主要包含了创设问题情境,引入新课,合作交流,解读探究,巩固提高,课时小结,课堂跟踪反馈等内容,欢迎下载使用。

    人教版八年级下册17.2 勾股定理的逆定理教学设计及反思: 这是一份人教版八年级下册17.2 勾股定理的逆定理教学设计及反思,共4页。教案主要包含了教学目标,教学重点难点,教学准备,教学过程,练习巩固,课堂总结,作业布置等内容,欢迎下载使用。

    数学八年级下册17.2 勾股定理的逆定理教案设计: 这是一份数学八年级下册17.2 勾股定理的逆定理教案设计,共7页。教案主要包含了教学目的,重点,例题的意图分析,课堂引入,例习题分析,课堂练习,课后练习,,参考答案等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        17.2 勾股定理的逆定理教案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map