第5章三角函数、解三角形 第5节三角函数的图象与性质 2025年高考总复习数学配人教版(适用于新高考新教材)ppt
展开1.能画出y=sin x,y=cs x,y=tan x的图象.2.了解三角函数的周期性、单调性、奇偶性和最大(小)值等性质.3.借助图象理解正弦函数、余弦函数在[0,2π],正切函数在 上的性质.
1.五点法作正弦函数、余弦函数的图象
五个关键点的横坐标是相应函数的零点和极值点(最值点)
2.正弦函数、余弦函数、正切函数的图象与性质
[2kπ-π,2kπ](k∈Z)
[2kπ,2kπ+π](k∈Z)
误区警示1.判断三角函数的奇偶性,应首先判断函数定义域是否关于原点对称.2.求函数y=Asin(ωx+φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx+φ看作一个整体,代入y=sin t的相应单调区间求解,否则将出现错误.3.写单调区间时,不要忘记k∈Z.
微思考能否认为函数y=tan x在它的定义域内为增函数?
常用结论1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个最小正周期,相邻的对称中心与对称轴之间的距离是 个最小正周期.(2)正切曲线相邻的两个对称中心之间的距离是半个最小正周期.2.与三角函数的奇偶性相关的结论
题组一思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)
2.函数y=|tan x|与y=tan x的最小正周期都是π.( )3.若非零实数T是函数f(x)的周期,则kT(k是非零整数)也是函数f(x)的周期.( )
题组二回源教材5.(多选题)(人教A版必修第一册5.4.1节练习第4题)函数y=1+cs x,x∈( ,2π)的图象与直线y=t(t为常数)的交点可能有( )A.0个 B.1个 C.2个 D.3个 E.4个
解析 画出函数y=1+cs x(x∈( ,2π))的图象,由图象可知,其与直线y=t的交点可能为0个或1个或2个.
6.(人教A版必修第一册习题5.4第12题)下列四个函数中,以π为最小正周
题组三连线高考8.(2023·天津,5)已知函数f(x)图象的一条对称轴为直线x=2,一个周期为4,则f(x)的解析式可能为( )
考点一 三角函数的定义域与值域(最值)(多考向探究预测)
考向1三角函数的定义域
解析 要使函数有意义,必须使sin x-cs x≥0.利用图象,在同一坐标系中画出[0,2π]上函数y=sin x和函数y=cs x的图象,如图所示.
考向2三角函数的值域(最值)
(3)函数y=sin x-cs x+sin xcs x的值域为 .
[对点训练2](1)设函数f(x)=|sin x|+cs 2x,则函数f(x)的最小值是 .
解析 f(x)=|sin x|+cs 2x=-2sin2x+|sin x|+1,令|sin x|=t,则y=-2t2+t+1,且t∈[0,1],因此当t=1时,函数取得最小值0.
(2)函数f(x)=2sin(x+ )+sin 2x+a的最大值为1,则实数a的值等于 .
考点二 三角函数的性质(多考向探究预测)
考向1三角函数的周期性
考向2三角函数的奇偶性例4(1)(2024·河北沧州模拟)若函数f(x)=cs(2x+ +φ)(φ>0)为奇函数,则φ的最小值为 .
(2)(2023·广东深圳高三月考)已知函数f(x)= -sin xcs x+5,且f(a)=-3,则f(-a)= .
解析 令g(x)= tan 4x-sin xcs x,由g(-x)=-g(x),得g(x)是奇函数,又f(x)=g(x)+5,于是f(a)+f(-a)=10,又f(a)=-3,所以f(-a)=13.
考向3三角函数图象的对称性
(2)函数f(x)=3sin(2x- +φ)+1,φ∈(0,π),且f(x)为偶函数,则φ= ,f(x)图象的对称中心为 .
考向4三角函数的单调性
(3)(多选题)下列不等式中成立的有( )
规律方法三角函数单调性问题常见类型及求解策略
[对点训练4](1)(2024·河北保定模拟)已知函数f(x)=cs(2x- ),则f(x)在区间[-2,0]上( )A.单调递增B.单调递减C.先增后减D.先减后增
第5章三角函数、解三角形 第8节解三角形的实际应用 2025年高考总复习数学配人教版(适用于新高考新教材)ppt: 这是一份第5章三角函数、解三角形 第8节解三角形的实际应用 2025年高考总复习数学配人教版(适用于新高考新教材)ppt,共40页。PPT课件主要包含了强基础固本增分,研考点精准突破,目录索引,考向3测量角度问题等内容,欢迎下载使用。
第5章三角函数、解三角形 第6节函数y=Asin(ωx+φ)的图象及应用 2025年高考总复习数学配人教版(适用于新高考新教材)ppt: 这是一份第5章三角函数、解三角形 第6节函数y=Asin(ωx+φ)的图象及应用 2025年高考总复习数学配人教版(适用于新高考新教材)ppt,共50页。PPT课件主要包含了强基础固本增分,研考点精准突破,目录索引,ωx+φ,题组三连线高考,-2-1等内容,欢迎下载使用。
第5章三角函数、解三角形 第3节两角和与差的三角函数、二倍角公式 2025年高考总复习数学配人教版(适用于新高考新教材)ppt: 这是一份第5章三角函数、解三角形 第3节两角和与差的三角函数、二倍角公式 2025年高考总复习数学配人教版(适用于新高考新教材)ppt,共37页。PPT课件主要包含了强基础固本增分,研考点精准突破,目录索引,考点三角的变换等内容,欢迎下载使用。