第01讲+导数的概念与运算(练习)-2024年高考数学一轮复习练习(新教材新高考)
展开2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
4、重视错题。错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
第01讲 导数的概念与运算
(模拟精练+真题演练)
1.(2023·全国·模拟预测)已知为实数,函数是偶函数,则曲线在点处的切线方程为( )
A.B.C.D.
2.(2023·陕西宝鸡·统考二模)已知抛物线C:,()的焦点为F,为C上一动点,若曲线C在点M处的切线的斜率为,则直线FM的斜率为( )
A.B.C.D.
3.(2023·陕西榆林·统考模拟预测)已知函数,若的图象在处的切线与坐标轴围成的三角形的面积为1,则( )
A.B.2C.±2D.
4.(2023·浙江绍兴·统考模拟预测)如图是函数的导函数的图象,若,则的图象大致为( )
A.B.
C.D.
5.(2023·山东潍坊·统考模拟预测)设为上的可导函数,且,则曲线在点处的切线斜率为( )
A.2B.-1C.1D.
6.(2023·河南郑州·统考模拟预测)若过原点与曲线相切的直线,切点均与原点不重合的有2条,则的取值范围是( )
A.B.C.D.
7.(2023·湖南衡阳·校联考模拟预测)若曲线与有三条公切线,则的取值范围为( )
A.B.C.D.
8.(2023·湖北·模拟预测)已知函数,都有的最小值为0,则的最小值为( )
A.B.C.D.
9.(多选题)(2023·重庆·校联考三模)德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设是函数的导函数,若,对,,且,总有,则下列选项正确的是( )
A.
B.
C.
D.
10.(多选题)(2023·黑龙江齐齐哈尔·齐齐哈尔市实验中学校考三模)若一条直线与两条或两条以上的曲线均相切,则称该直线为这些曲线的公切线,已知直线:为曲线:和:的公切线,则下列结论正确的是( )
A.曲线的图象在轴的上方
B.当时,
C.若,则
D.当时,和必存在斜率为的公切线
11.(多选题)(2023·全国·校联考模拟预测)已知函数,过点的直线与曲线相切,则与直线垂直的直线为( )
A.B.C.D.
12.(多选题)(2023·江苏南通·模拟预测)过平面内一点P作曲线两条互相垂直的切线、,切点为、、不重合,设直线、分别与y轴交于点A、B,则( )
A.、两点的纵坐标之积为定值B.直线的斜率为定值
C.线段AB的长度为定值D.面积的取值范围为
13.(2023·重庆·统考模拟预测)已知函数,若这两个函数的图象在公共点处有相同的切线,则_________.
14.(2023·甘肃金昌·永昌县第一高级中学统考模拟预测)曲线在点处的切线方程为______.
15.(2023·河北唐山·开滦第二中学校考模拟预测)已知函数的图象在处的切线与在处的切线相互垂直,则的最小值是___________.
16.(2023·湖北武汉·华中师大一附中校考模拟预测)若函数的图象上存在不同的两点,使函数图象在这两点处的切线斜率之积小于0且斜率之和等于常数e,则称该函数为“e函数”,下列四个函数中,其中为“e函数”的是________.
①;②;③;④
1.(2019·全国·统考高考真题)已知曲线在点处的切线方程为,则
A.B.C.D.
2.(2019·全国·高考真题)曲线y=2sinx+csx在点(π,–1)处的切线方程为
A.B.
C.D.
3.(2022·全国·统考高考真题)曲线过坐标原点的两条切线的方程为____________,____________.
4.(2022·全国·统考高考真题)若曲线有两条过坐标原点的切线,则a的取值范围是________________.
5.(2021·全国·统考高考真题)已知函数,函数的图象在点和点的两条切线互相垂直,且分别交y轴于M,N两点,则取值范围是_______.
6.(2021·全国·统考高考真题)曲线在点处的切线方程为__________.
7.(2020·全国·统考高考真题)曲线的一条切线的斜率为2,则该切线的方程为______________.
8.(2019·全国·高考真题)曲线在点处的切线方程为___________.
最新高考数学一轮复习【讲通练透】 第01讲 导数的概念与运算(练透): 这是一份最新高考数学一轮复习【讲通练透】 第01讲 导数的概念与运算(练透),文件包含第01讲导数的概念与运算练习原卷版docx、第01讲导数的概念与运算练习解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
2024年高考数学一轮复习讲练测(新教材新高考)第01讲 导数的概念与运算(练习)(原卷版+解析): 这是一份2024年高考数学一轮复习讲练测(新教材新高考)第01讲 导数的概念与运算(练习)(原卷版+解析),共21页。
2024年高考数学一轮复习讲练测(新教材新高考)第01讲 导数的概念与运算(讲义)(原卷版+解析): 这是一份2024年高考数学一轮复习讲练测(新教材新高考)第01讲 导数的概念与运算(讲义)(原卷版+解析),共53页。试卷主要包含了概念,几何意义,物理意义,已知切线求参数问题,切线的条数问题,切线平行,最值问题,牛顿迭代法等内容,欢迎下载使用。