年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    重难点突破11 导数中的同构问题(六大题型)-2024年高考数学一轮复习讲练测(新教材新高考)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      重难点突破11 导数中的同构问题(六大题型)(原卷版).docx
    • 解析
      重难点突破11 导数中的同构问题(六大题型)(解析版).docx
    重难点突破11 导数中的同构问题(六大题型)(原卷版)第1页
    重难点突破11 导数中的同构问题(六大题型)(原卷版)第2页
    重难点突破11 导数中的同构问题(六大题型)(原卷版)第3页
    重难点突破11 导数中的同构问题(六大题型)(解析版)第1页
    重难点突破11 导数中的同构问题(六大题型)(解析版)第2页
    重难点突破11 导数中的同构问题(六大题型)(解析版)第3页
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重难点突破11 导数中的同构问题(六大题型)-2024年高考数学一轮复习讲练测(新教材新高考)

    展开

    这是一份重难点突破11 导数中的同构问题(六大题型)-2024年高考数学一轮复习讲练测(新教材新高考),文件包含重难点突破11导数中的同构问题六大题型原卷版docx、重难点突破11导数中的同构问题六大题型解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
    2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
    3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
    4、重视错题。错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
    重难点突破11 导数中的同构问题
    目录
    方法技巧总结一、常见的同构函数图像
    方法技巧总结二:同构式的基本概念与导数压轴题
    1、同构式:是指除了变量不同,其余地方均相同的表达式
    2、同构式的应用:
    (1)在方程中的应用:如果方程和呈现同构特征,则可视为方程的两个根
    (2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.
    ①指对各一边,参数是关键;②常用“母函数”:,;寻找“亲戚函数”是关键;
    ③信手拈来凑同构,凑常数、、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围.
    (3)在解析几何中的应用:如果满足的方程为同构式,则为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线的方程
    (4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于与的同构式,从而将同构式设为辅助数列便于求解
    3、常见的指数放缩:
    4、常见的对数放缩:
    5、常见三角函数的放缩:
    6、学习指对数的运算性质时,曾经提到过两个这样的恒等式:
    (1) 且时,有
    (2) 当 且时,有
    再结合指数运算和对数运算的法则,可以得到下述结论(其中)
    (3)
    (4)
    (5)
    (6)
    再结合常用的切线不等式lnxx-1, 等,可以得到更多的结论,这里仅以第(3)条为例进行引申:
    (7);
    (8);
    7、同构式问题中通常构造亲戚函数与,常见模型有:
    = 1 \* GB3 ①;
    = 2 \* GB3 ②;
    = 3 \* GB3 ③
    8、乘法同构、加法同构
    (1)乘法同构,即乘同构,如;
    (2)加法同构,即加同构,如,
    (3)两种构法的区别:
    = 1 \* GB3 ①乘法同构,对变形要求低,找亲戚函数与易实现,但构造的函数与均不是单调函数;
    = 2 \* GB3 ②加法同构,要求不等式两边互为反函数,构造后的函数为单调函数,可直接由函数不等式求参数范围;
    题型一:不等式同构
    例1.(2023·四川达州·高二校考阶段练习)已知,且,,,则( )
    A.B.
    C.D.
    例2.(2023·湖北黄石·高二校考期中)已知.且,,,则( )
    A.B.
    C.D.
    例3.(2023·陕西榆林·高二校考期末)已知a,b,,且,,,则a,b,c的大小关系是( )
    A.B.C.D.
    变式1.(2023·河南·高二校联考期中)已知,,,则,,的大小顺序是( )
    A.B.
    C.D.
    变式2.(2023·全国·高三专题练习)已知,且,其中e为自然对数的底数,则下列选项中一定成立的是( )
    A.B.
    C.D.
    变式3.(2023·江西赣州·高二江西省信丰中学校考阶段练习)已知函数的导数满足对恒成立,且实数,满足,则下列关系式恒成立的是( )
    A.B.C.D.
    题型二:同构变形
    例4.(2023·全国·高三专题练习)对下列不等式或方程进行同构变形,并写出相应的同构函数.
    (1);
    (2);
    (3);
    (4);
    (5);
    (6);
    (7);
    (8).
    题型三:零点同构
    例5.(2023·全国·高三专题练习)设,满足,则( )
    A.B.C.D.6
    例6.(2023·全国·高二专题练习)在数学中,我们把仅有变量不同,而结构、形式相同的两个式子称为同构式,相应的方程称为同构方程,相应的不等式称为同构不等式.若关于的方程和关于b的方程可化为同构方程,则的值为( )
    A.B.eC.D.1
    例7.(2023·安徽池州·高三池州市第一中学校考阶段练习)已知函数和有相同的最大值.
    (1)求;
    (2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列.
    变式4.(2023·安徽安庆·高三校联考阶段练习)在数学中,我们把仅有变量不同,而结构、形式相同的两个式子称为同构式,相应的方程称为同构方程,相应的不等式称为同构不等式.若关于的方程和关于的方程可化为同构方程.
    (1)求的值;
    (2)已知函数.若斜率为的直线与曲线相交于,两点,求证:.
    变式5.(2023·上海浦东新·高一上海南汇中学校考期末)设函数的定义域为,若函数满足条件:存在,使在上的值域为(其中,则称为区间上的“倍缩函数”.
    (1)证明:函数为区间上的“倍缩函数”;
    (2)若存在,使函数为上的“倍缩函数”,求实数的取值范围;
    (3)给定常数,以及关于的函数,是否存在实数,使为区间上的“1倍缩函数”.若存在,请求出的值;若不存在,请说明理由.
    变式6.(2023·全国·高三专题练习)已知函数.
    (1)求函数的单调区间;
    (2)设函数,若函数有两个零点,求实数a的取值范围.
    变式7.(2023·全国·统考高考真题)已知函数和有相同的最小值.
    (1)求a;
    (2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
    变式8.(2023·全国·高三专题练习)已知函数和有相同的最大值,并且.
    (1)求;
    (2)证明:存在直线,其与两条曲线和共有三个不同的交点,且从左到右的三个交点的横坐标成等比数列.
    变式9.(2023·江苏常州·高三统考阶段练习)已知函数和有相同的最大值.
    (1)求实数的值;
    (2)证明:存在直线,其与两曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列.
    题型四:利用同构解决不等式恒成立问题
    例8.(2023·全国·高三专题练习)完成下列各问
    (1)已知函数,若恒成立,则实数a的取值范围是_______;
    (2)已知函数,若恒成立,则正数a的取值范围是_______;
    (3)已知函数,若恒成立,则正数a的取值范围是_______;
    (4)已知不等式对任意正数x恒成立,则实数a的取值范围是_______;
    (5)已知函数,其中,若恒成立,则实数a与b的大小关系是_______;
    (6)已知函数,若恒成立,则实数a的取值范围是_______;
    (7)已知函数,若恒成立,则实数a的取值范围是_______;
    (8)已知不等式,对恒成立,则k的最大值为_______;
    (9)若不等式对恒成立,则实数a的取值范围是_______;
    例9.(2023·全国·高三专题练习)已知.设实数,若对任意的正实数,不等式恒成立,则的最小值为___________.
    例10.(2023·四川泸州·泸州老窖天府中学校考模拟预测)已知不等式对恒成立,则实数m的最小值为__________.
    变式10.设实数,若对任意的,不等式恒成立,则的最小值为
    A.B.C.D.
    变式11.设实数,若对任意的,,不等式恒成立,则的最大值为
    A.B.C.D.
    变式12.(2023·全国·高三专题练习)已知函数,,当时,恒成立,则实数的取值范围是( )
    A.B.C.D.
    变式13.(2023·云南·校联考模拟预测)已知函数,.
    (1)求函数的极值;
    (2)请在下列①②中选择一个作答(注意:若选两个分别作答则按选①给分).
    ①若恒成立,求实数的取值范围;
    ②若关于的方程有两个实根,求实数的取值范围.
    题型五:利用同构求最值
    例11.(2023·全国·高二专题练习)“朗博变形”是借助指数运算或对数运算,将化成,的变形技巧.已知函数,,若,则的最大值为( )
    A.B.C.D.
    例12.(2023·全国·高二期末)已知函数,若,则的最小值为( )
    A.B.C.D.
    例13.(2023·江西·临川一中校联考模拟预测)已知函数,,若,,则的最小值为( )
    A.B.C.D.
    变式14.(2023·全国·高三专题练习)已知函数,若,则的最大值为( )
    A.B.C.D.
    变式15.(2023·全国·高三专题练习)已知大于1的正数,满足,则正整数的最大值为( )
    A.7B.8C.5D.11
    变式16.(2023·安徽淮南·统考一模)已知两个实数、满足,在上均恒成立,记、的最大值分别为、,那么
    A.B.C.D.
    题型六:利用同构证明不等式
    例14.已知函数,.
    (1)讨论的单调区间;
    (2)当时,证明.
    例15.已知函数.
    (1)讨论函数的单调性;
    (2)当时,求证:在上恒成立;
    (3)求证:当时,.
    例16.已知函数.
    (1)讨论函数的零点的个数;
    (2)证明:.
    变式17.已知函数.
    (1)当时,求函数的单调区间;
    (2)若函数在处取得极值,对,恒成立,求实数的取值范围;
    (3)当时,求证:.
    变式18.已知函数,函数,,.
    (1)讨论的单调性;
    (2)证明:当时,.
    (3)证明:当时,.
    函数表达式
    图像
    函数表达式
    图像
    函数极值点
    函数极值点
    函数极值点
    函数极值点
    过定点
    函数极值点
    函数极值点
    函数极值点
    函数极值点

    相关试卷

    【讲通练透】重难点突破11 导数中的同构问题(六大题型)-2024年高考数学重难点突破精讲:

    这是一份【讲通练透】重难点突破11 导数中的同构问题(六大题型)-2024年高考数学重难点突破精讲,文件包含重难点突破11导数中的同构问题六大题型原卷版docx、重难点突破11导数中的同构问题六大题型解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。

    2024年高考数学一轮复习讲练测(新教材新高考)重难点突破11 导数中的同构问题(六大题型)(原卷版+解析):

    这是一份2024年高考数学一轮复习讲练测(新教材新高考)重难点突破11 导数中的同构问题(六大题型)(原卷版+解析),共51页。试卷主要包含了常见的同构函数图像等内容,欢迎下载使用。

    重难点突破11 导数中的同构问题(六大题型)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考):

    这是一份重难点突破11 导数中的同构问题(六大题型)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含重难点突破11导数中的同构问题六大题型原卷版docx、重难点突破11导数中的同构问题六大题型解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map