终身会员
搜索
    上传资料 赚现金
    第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-2024年高考数学一轮复习讲义(新教材新高考)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)(原卷版).docx
    • 解析
      第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)(解析版).docx
    第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-2024年高考数学一轮复习讲义(新教材新高考)01
    第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-2024年高考数学一轮复习讲义(新教材新高考)02
    第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-2024年高考数学一轮复习讲义(新教材新高考)03
    第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-2024年高考数学一轮复习讲义(新教材新高考)01
    第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-2024年高考数学一轮复习讲义(新教材新高考)02
    第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-2024年高考数学一轮复习讲义(新教材新高考)03
    还剩13页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-2024年高考数学一轮复习讲义(新教材新高考)

    展开
    这是一份第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-2024年高考数学一轮复习讲义(新教材新高考),文件包含第06讲事件的相互独立性条件概率与全概率公式七大题型讲义原卷版docx、第06讲事件的相互独立性条件概率与全概率公式七大题型讲义解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。

    2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
    3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
    4、重视错题。错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
    第06讲 事件的相互独立性、条件概率与全概率公式
    目录
    知识点1、条件概率
    (一)定义
    一般地,设,为两个事件,且,称为在事件发生的条件下,事件发生的条件概率.
    注意:(1)条件概率中“”后面就是条件;(2)若,表示条件不可能发生,此时用条件概率公式计算就没有意义了,所以条件概率计算必须在的情况下进行.
    (二)性质
    (1)条件概率具有概率的性质,任何事件的条件概率都在和1之间,即.
    (2)必然事件的条件概率为1,不可能事件的条件概率为.
    (3)如果与互斥,则.
    注意:(1)如果知道事件发生会影响事件发生的概率,那么;
    (2)已知发生,在此条件下发生,相当于发生,要求,相当于把看作新的基本事件空间计算发生的概率,即.
    知识点2、相互独立与条件概率的关系
    (一)相互独立事件的概念及性质
    (1)相互独立事件的概念
    对于两个事件,,如果,则意味着事件的发生不影响事件发生的概率.设,根据条件概率的计算公式,,从而.
    由此我们可得:设,为两个事件,若,则称事件与事件相互独立.
    (2)概率的乘法公式
    由条件概率的定义,对于任意两个事件与,若,则.我们称上式为概率的乘法公式.
    (3)相互独立事件的性质
    如果事件,互相独立,那么与,与,与也都相互独立.
    (4)两个事件的相互独立性的推广
    两个事件的相互独立性可以推广到个事件的相互独立性,即若事件,,…,相互独立,则这个事件同时发生的概率.
    (二)事件的独立性
    (1)事件与相互独立的充要条件是.
    (2)当时,与独立的充要条件是.
    (3)如果,与独立,则成立.
    知识点3、全概率公式
    (一)全概率公式
    (1);
    (2)定理若样本空间中的事件,,…,满足:
    ①任意两个事件均互斥,即,,;
    ②;
    ③,.
    则对中的任意事件,都有,且

    注意:(1)全概率公式是用来计算一个复杂事件的概率,它需要将复杂事件分解成若干简单事件的概率计算,即运用了“化整为零”的思想处理问题.
    (2)什么样的问题适用于这个公式?所研究的事件试验前提或前一步骤试验有多种可能,在这多种可能中均有所研究的事件发生,这时要求所研究事件的概率就可用全概率公式.
    (二)贝叶斯公式
    (1)一般地,当且时,有
    (2)定理若样本空间中的事件满足:
    ①任意两个事件均互斥,即,,;
    ②;
    ③,.
    则对中的任意概率非零的事件,都有,

    注意:(1)在理论研究和实际中还会遇到一类问题,这就是需要根据试验发生的结果寻找原因,看看导致这一试验结果的各种可能的原因中哪个起主要作用,解决这类问题的方法就是使用贝叶斯公式.贝叶斯公式的意义是导致事件发生的各种原因可能性的大小,称之为后验概率.
    (2)贝叶斯公式充分体现了,,,,,之间的转关系,即,,之间的内在联系.
    题型一:条件概率
    例1.(2023·云南大理·统考模拟预测)“狼来了”的故事大家小时候应该都听说过:小孩第一次喊“狼来了”,大家信了,但去了之后发现没有狼;第二次喊“狼来了”,大家又信了,但去了之后又发现没有狼;第三次狼真的来了,但是这个小孩再喊狼来了就没人信了.从数学的角度解释这一变化,假设小孩是诚实的,则他出于某种特殊的原因说谎的概率为;小孩是不诚实的,则他说谎的概率是.最初人们不知道这个小孩诚实与否,所以在大家心目中每个小孩是诚实的概率是.已知第一次他说谎了,那么他是诚实的小孩的概率是( )
    A.B.C.D.
    例2.(2023·河北秦皇岛·统考模拟预测)已知有两箱书,第一箱中有3本故事书,2本科技书;第二箱中有2本故事书,3本科技书.随机选取一箱,再从该箱中随机取书两次,每次任取一本,做不放回抽样,则在第一次取到科技书的条件下,第二次取到的也是科技书的概率为( )
    A.B.C.D.
    例3.(2023·广西柳州·统考模拟预测)根据历年的气象数据,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2,则在刮四级以上大风的情况下,发生中度雾霾的概率为( )
    A.0.5B.0.625C.0.8D.0.9
    变式1.(2023·河南南阳·高三南阳中学校考开学考试)袋子中装有大小、形状完全相同的2个白球和2个红球.现从中不放回地摸取2个球,已知第二次摸到的是红球,则第一次摸到红球的概率为( )
    A.B.C.D.
    变式2.(2023·云南曲靖·高三校联考阶段练习)有首歌道“大理三月好风光,蝴蝶泉边好梳妆”,近年来大理州一直致力开发旅游事业,吸引着大批的游客前往大理旅游.现有甲、乙两位游客慕名来到大理,准备从苍山、洱海、大理古城、崇圣寺三塔、蝴蝶泉五个景点中随机选择一个景点游玩,记事件为“甲和乙至少一人选择蝴蝶泉”,事件为“甲和乙选择的景点不同”,则( )
    A.B.C.2D.
    变式3.(2023·广东·高三河源市河源中学校联考阶段练习)从1、2、3、4、5、6、7这7个数中任取5个不同的数,事件:“取出的5个不同的数的中位数是4”,事件:“取出的5个不同的数的平均数是4”,则( )
    A.B.C.D.
    【解题方法总结】
    用定义法求条件概率的步骤
    (1)分析题意,弄清概率模型;
    (2)计算,;
    (3)代入公式求.
    题型二:相互独立事件的判断
    例4.(2023·安徽·高三校联考阶段练习)已知A,B,C为三个随机事件且,,>0,则A,B,C相互独立是A,B,C两两独立的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    例5.(2023·上海浦东新·高三华师大二附中校考阶段练习)已知事件,满足,,则不能说明事件,相互独立的是( )
    A.B.
    C.D.
    例6.(2023·福建南平·高三福建省政和第一中学校考阶段练习)甲箱中有5个红球,2个白球和3个黑球;乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以,,表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B表示由乙箱中取出的球是红球的事件,则下列结论错误的是( )
    A.B.
    C.事件B与事件不相互独立D.,,两两互斥
    变式4.(2023·全国·高三专题练习)某家庭有三个孩子,假定生男孩和生女孩是等可能且相互独立的.记事件A:该家庭既有男孩又有女孩;事件:该家庭最多有一个男孩;事件:该家庭最多有一个女孩;则下列说法中正确的是( )
    A.事件与事件互斥但不对立B.事件A与事件互斥且对立
    C.事件与事件相互独立D.事件A与事件相互独立
    变式5.(2023·全国·高三专题练习)随着2022年卡塔尔世界杯的举办,中国足球也需要重视足球教育.某市为提升学生的足球水平,特地在当地选拔出几所学校作为足球特色学校,开设了“5人制”“7人制”“9人制”“11人制”四类足球体验课程.甲、乙两名同学各自从中任意挑选两门课程学习,设事件“甲乙两人所选课程恰有一门相同”,事件“甲乙两人所选课程完全不同”,事件“甲乙两人均未选择‘5人制’课程”,则( )
    A.A与为对立事件B.A与互斥C.A与相互独立D.与相互独立
    变式6.(2023·四川宜宾·统考三模)同时抛掷两枚质地均匀的骰子一次,事件甲表示“第一枚骰子向上的点数为奇数”,事件乙表示“第二枚骰子向上的点数为偶数”,事件丙表示“两枚骰子向上的点数之和为”,事件丁表示“两枚骰子向上的点数之和为”,则( )
    A.事件甲与事件乙互斥B.
    C.事件甲与事件丁相互独立D.事件丙与事件丁互为对立事件
    【解题方法总结】
    判断事件是否相互独立的方法
    (1)定义法:事件,相互独立⇔.
    (2)由事件本身的性质直接判定两个事件发生是否相互影响.
    (3)条件概率法:当时,可用判断.
    题型三:相互独立事件概率的计算
    例7.(2023·天津·校联考一模)某产品的质量检验过程依次为进货检验(IQC)、生产过程检验(IPQC)、出货检验(OQC) 三个环节.已知某产品IQC的单独通过率为,IPQC的单独通过率为,规定上一类检验不通过则不进入下一类检验,未通过可修复后再检验一次(修复后无需从头检验,通过率不变且每类检验最多两次),且各类检验间相互独立,则一件该产品能进入OQC环节的概率为 .
    例8.(2023·全国·高三专题练习)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为 .
    例9.(2023·全国·高三专题练习)甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响,则乙获胜的概率为 .
    变式7.(2023·全国·校联考模拟预测)已知甲、乙、丙三位选手参加某次射击比赛,比赛规则如下:①每场比赛有两位选手参加,并决出胜负;②每场比赛获胜的选手与未参加此场比赛的选手进行下一场的比赛;③在比赛中,若有一位选手首先获胜两场,则本次比赛结束,该选手获得此次射击比赛第一名.若在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,且甲与乙先参加比赛,则甲获得第一名的概率为 .
    变式8.(2023·山东·高三专题练习)无症状感染者被认为是新冠肺炎疫情防控的难点之一.国际期刊《自然》杂志中一篇文章指出,30%~60%的新冠感染者无症状或者症状轻微,但他们传播病毒的能力并不低,这些无症状感染者可能会引起新一轮的疫情大爆发.我们把与病毒携带者有过密切接触的人群称为密切接触者.假设每名密切接触者成为无症状感染者的概率均为,那么4名密切接触者中,至多有2人成为无症状感染者的概率为 .
    变式9.(2023·重庆沙坪坝·高三重庆八中校考阶段练习)某电视台的夏日水上闯关节目一共有三关,第一关与第二关的过关率分别为,.只有通过前一关才能进入下一关,每一关都有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进入第三关的概率为 .
    变式10.(2023·浙江·高三专题练习)2019年底,武汉发生“新型冠状病毒”肺炎疫情,国家卫健委紧急部署,从多省调派医务工作者前去支援,正值农历春节举家团圆之际,他们成为“最美逆行者”.武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.若在排查期间,某小区有5人被确认为“确诊患者的密切接触者”,现医护人员要对这5人随机进行逐一“核糖核酸”检测,只要出现一例阳性,则将该小区确定为“感染高危小区”.假设每人被确诊的概率均为且相互独立,若当时,至少检测了4人该小区被确定为“感染高危小区”的概率取得最大值,则 .
    【解题方法总结】
    (1)求相互独立事件同时发生的概率的步骤
    ①首先确定各事件之间是相互独立的.
    ②求出每个事件的概率,再求积.
    (2)使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的.
    题型四:相互独立事件概率的综合应用
    例10.(2023·河南焦作·高三统考开学考试)小李参加某项专业资格考试,一共要考3个科目,若3个科目都合格,则考试直接过关;若都不合格,则考试不过关;若有1个或2相科目合格,则所有不合格的科目需要进行一次补考,补考都合格的考试过关,否则不过关.已知小李每个科目每次考试合格的概率均为p(),且每个科目每次考试的结果互不影响.
    (1)记“小李恰有1个科目需要补考”的概率为,求的最大值点.
    (2)以(1)中确定的作为p的值.
    (ⅰ)求小李这项资格考试过关的概率;
    (ⅱ)若每个科目每次考试要缴纳20元的费用,将小李需要缴纳的费用记为X元,求.
    例11.(2023·湖北武汉·华中师大一附中校考模拟预测)某猎人发现在距离他100米处的位置有一只猎物,如果直接射击,则只射击一次就击中猎物的概率为,为了有更大的概率击中猎物,猎人准备多次射击.假设每次射击结果之间相互独立,猎人每次射击击中猎物的概率与他和猎物之间的距离成反比.
    (1)如果猎人第一次射击没有击中药物,则猎人经过调整后进行第二次射击,但由于猎物受到惊吓奔跑,使得第二次射击时猎物和他之间的距离增加了50米;如果第二次射击仍然没有击中猎物,则第三次射击时猎物和他之间的距离又增加了50米,如此进行下去,每次射击如果没有击中,则下一次射击时猎物和他之间的距离都会增加50米,当猎人击中猎物或发现某次射击击中的概率小于时就停止射击,求猎人停止射击时射击次数的概率分布列与数学期望.
    (2)如果猎人直接连续射击,由于射击速度很快,可以认为在射击期间猎物和猎人之间的距离保持不变,如果希望至少击中猎物一次的概率超过98%,至少要连续射击多少次?
    附:.
    例12.(2023·河北沧州·校考三模)甲、乙、丙三人进行台球比赛,比赛规则如下:先由两人上场比赛,第三人旁观,一局结束后,败者下场作为旁观者,原旁观者上场与胜者比赛,按此规则循环下去.若比赛中有人累计获胜3局,则该人获得最终胜利,比赛结束,三人经过抽签决定由甲、乙先上场比赛,丙作为旁观者.根据以往经验,每局比赛中,甲、乙比赛甲胜概率为,乙、丙比赛乙胜概率为,丙、甲比赛丙胜概率为,每局比赛相互独立且每局比赛没有平局.
    (1)比赛完3局时,求甲、乙、丙各旁观1局的概率;
    (2)已知比赛进行5局后结束,求甲获得最终胜利的概率.
    变式11.(2023·贵州·校联考模拟预测)某校为丰富教职工业余文化活动,在教师节活动中举办了“三神杯”比赛,现甲乙两组进入到决赛阶段,决赛采用三局两胜制决出冠军,每一局比赛中甲组获胜的概率为,且甲组最终获得冠军的概率为(每局比赛没有平局).
    (1)求;
    (2)已知冠军奖品为28个篮球,在甲组第一局获胜后,比赛被迫取消,奖品分配方案是:如果比赛继续进行下去,按照甲乙两组各自获胜的概率分配篮球,请问按此方案,甲组、乙组分别可获得多少个篮球?
    变式12.(2023·河南郑州·统考模拟预测)手工刺绣是中国非物质文化遗产之一,指以手工方式,用针和线把人的设计和制作添加在任何存在的织物上的一种艺术,大致分为绘制白描图和手工着色、电脑着色,选线、配线和裁布三个环节,简记为工序A,工序,工序.经过试验测得小李在这三道工序成功的概率依次为,,.现某单位推出一项手工刺绣体验活动,报名费30元,成功通过三道工序最终的奖励金额是200元,为了更好地激励参与者的兴趣,举办方推出了一项工序补救服务,可以在着手前付费聘请技术员,若某一道工序没有成功,可以由技术员完成本道工序.每位技术员只完成其中一道工序,每聘请一位技术员需另付费100元,制作完成后没有接受技术员补救服务的退还一半的聘请费用.
    (1)若小李聘请一位技术员,求他成功完成三道工序的概率;
    (2)若小李聘请两位技术员,求他最终获得收益的期望值.
    变式13.(2023·广东阳江·高三统考阶段练习)部分高校开展基础学科招生改革试点工作(强基计划)的校考由试点高校自主命题,校考过程中达到笔试优秀才能进入面试环节.已知两所大学的笔试环节都设有三门考试科目且每门科目是否达到优秀相互独立.若某考生报考大学,每门科目达到优秀的概率均为,若该考生报考大学,每门科目达到优秀的概率依次为,,,其中.
    (1)若,分别求出该考生报考两所大学在笔试环节恰好有一门科目达到优秀的概率;
    (2)强基计划规定每名考生只能报考一所试点高校,若以笔试过程中达到优秀科目个数的期望为依据作出决策,该考生更有希望进入大学的面试环节,求的范围.
    【解题方法总结】
    1、求复杂事件的概率一般可分三步进行
    (1)列出题中涉及的各个事件,并用适当的符号表示它们;
    (2)理清各事件之间的关系,恰当地用事件间的“并”“交”表示所求事件;
    (3)根据事件之间的关系准确地运用概率公式进行计算.
    2、计算事件同时发生的概率常用直接法,当遇到“至少”“至多”问题,考虑逆向思维,考查原事件的对立事件,用间接法处理.
    题型五:全概率公式及其应用
    例13.(2023·江西·高三校联考阶段练习)某同学喜爱篮球和跑步运动.在暑假期间,该同学下午去打篮球的概率为.若该同学下午去打篮球,则晚上一定去跑步;若下午不去打篮球,则晚上去跑步的概率为.已知该同学在某天晚上去跑步,则下午打过篮球的概率为 .
    例14.(2023·江苏南京·高三统考开学考试)某批麦种中,一等麦种占90%,二等麦种占10%,一、二等麦种种植后所结麦穗含有50粒以上麦粒的概率分别为0.6,0.2,则这批麦种种植后所结麦穗含有50粒以上麦粒的概率为 .
    例15.(2023·湖南长沙·高三周南中学校考阶段练习)某篮球队教练对近两年队员甲参加过的100场比赛进行统计:甲在前锋位置出场20次,其中球队获胜14次;中锋位置出场30次,其中球队获胜21次;后卫位置出场50次,其中球队获胜40次.用该样本的频率估计概率,则甲参加比赛时,该该球队某场比赛获胜的概率为 .
    变式14.(2023·福建漳州·高三统考开学考试)有一批同一型号的产品,其中甲工厂生产的占,乙工厂生产的占.已知甲、乙两工厂生产的该型号产品的次品率分别为,,则从这批产品中任取一件是次品的概率是 .
    变式15.(2023·江苏镇江·高三统考开学考试)现有两个罐子,1号罐子中装有3个红球、2个黑球,2号罐子中装有4个红球、2个黑球.现先从1号罐子中随机取出一个球放入2号罐子,再从2号罐子中取一个球,则从2号罐子中取出的球是红球的概率为 .
    变式16.(2023·福建·校联考模拟预测)若一个点从三棱柱下底面顶点出发,一次运动中随机去向相邻的另一个顶点,则在5次运动后这个点仍停留在下底面的概率是 .
    变式17.(2023·上海浦东新·高三上海市实验学校校考开学考试)已知,则 .
    【解题方法总结】
    全概率公式在解题中体现了“化整为零、各个击破”的转化思想,可将较为复杂的概率计算分解为一些较为容易的情况分别进行考虑.
    题型六:贝叶斯公式及其应用
    例16.(2023·河北秦皇岛·高三校联考开学考试)有甲、乙两个加工厂加工同一型号零件,甲厂加工的次品率为,乙厂加工的次品率为,已知甲乙两个加工厂加工的零件数分别占当地市场总数的45%,55%,现从当地市场上任意买一件这种型号的零件、则买到的零件是次品,且是甲厂加工的概率为 .
    例17.(2023·福建漳州·高三福建省华安县第一中学校考开学考试)有3台车床加工同一型号的零件,第1台加工的次品率为8%,第2台加工的次品率为3%,第3台加工的次品率为2%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的10%,40%,50%,从混放的零件中任取一个零件,如果该零件是次品,那么它是第3台车床加工出来的概率为 .
    29.(2023·辽宁锦州·统考模拟预测)某考生回答一道有4个选项的选择题,设会答该题的概率是,并且会答时一定能答对,若不会答,则在4个答案中任选1个.已知该考生回答正确,则他确实会答该题的概率是 .
    29.(2023·河南安阳·统考二模)学校给每位教师随机发了一箱苹果,李老师将其分为两份,第1份占总数的40%,次品率为5%,第2份占总数的60%,次品率为4%.若李老师分份之前随机拿了一个发现是次品后放回,则该苹果被分到第1份中的概率为 .
    30.(2023·浙江·高三校联考阶段练习)随着城市经济的发展,早高峰问题越发严重,上班族需要选择合理的出行方式.某公司员工小明上班出行方式由三种,某天早上他选择自驾,坐公交车,骑共享单车的概率分别为,而他自驾,坐公交车,骑共享单车迟到的概率分别为,结果这一天他迟到了,在此条件下,他自驾去上班的概率是 .
    31.(2023·天津滨海新·高三大港一中校考阶段练习)有三个笼子,里面分别放有两只雄兔一只雌兔、两只雄兔两只雌兔、以及三只雌兔.如果在从一个笼子里拿出一只雄兔之后,那么再从这个笼子里取出雄兔的概率为 .
    32.(2023·全国·高三专题练习)某人下午5:00下班,他所积累的资料如表所示
    某日他抛一枚硬币决定乘地铁回家还是乘汽车回家,结果他是5:47到家的,则他是乘地铁回家的概率为 .
    【解题方法总结】
    1、利用贝叶斯公式求概率的步骤
    第一步:利用全概率公式计算,即;
    第二步:计算,可利用求解;
    第三步:代入求解.
    2、贝叶斯概率公式反映了条件概率,全概率公式及乘法公式之间的关系,即.
    题型七:全概率公式与贝叶斯公式的综合应用
    例18.(2023·福建三明·统考三模)在二十大报告中,体育、健康等关键词被多次提及,促进群众体育和竞技体育全面发展,加快建设体育强国是全面建设社会主义现代化国家的一个重要目标.某校为丰富学生的课外活动,加强学生体质健康,拟举行羽毛球团体赛,赛制采取局胜制,每局都是单打模式,每队有名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手对乙队每名队员的胜率均为,甲队其余名队员对乙队每名队员的胜率均为.(注:比赛结果没有平局)
    (1)求甲队最终获胜且种子选手上场的概率;
    (2)已知甲队获得最终胜利,求种子选手上场的概率.
    例19.(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知外形完全一样的某品牌电子笔支装一盒,每盒中的电子笔次品最多一支,每盒电子笔有次品的概率是.
    (1)现有一盒电子笔,抽出两支来检测.
    ①求抽出的两支均是正品的概率;
    ②已知抽出的两支是正品,求剩余产品有次品的概率.
    (2)已知甲乙两盒电子笔均有次品,由于某种原因将两盒笔完全随机的混合在了一起,现随机选支电子笔进行检测,记为选出的支电子笔中次品的数目,求的分布列和期望.
    例20.(2023·江苏南京·南京师大附中校考模拟预测)甲,乙,丙三个厂家生产的手机充电器在某地市场上的占有率分别为25%,35%,40%,其充电器的合格率分别为70%,75%,80%.
    (1)当地工商质检部门随机抽取3个手机充电器,其中由甲厂生产的手机充电器数目记为,求的概率分布列,期望和方差;
    (2)现从三个厂家生产的手机充电器中随机抽取1个,发现它是不合格品,求它是由甲厂生产的概率.
    变式18.(2023·湖南长沙·高三周南中学校考开学考试)英国数学家贝叶斯(1701-1763)在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设,,…,是一组两两互斥的事件,,且,,则对任意的事件,,有,. 现有三台车床加工同一型号的零件,第台加工的次品率为,每加工一个零件耗时分钟,第,台加工的次品率均为,每加工一个零件分别耗时分钟和分钟,加工出来的零件混放在一起.已知第,,台车床加工的零件数分别占总数的,,.
    (1)任取一个零件,计算它是次品的概率;
    (2)如果取到的零件是次品,计算加工这个零件耗时(分钟)的分布列和数学期望.
    变式19.(2023·全国·高三专题练习)为提升学生的综合素养能力,学校积极为学生搭建平台,组织学生参与各种社团活动.在学校辩论队活动中,甲同学积极参与.为了更好的了解每个同学的社团参与情况和能力水平,对每位参与辩论队的同学进行跟踪记录.社团老师了解到,甲自加入辩论队以来参加过100场辩论比赛:甲作为一辩出场20次,其中辩论队获胜14次;甲作为二辩出场30次,其中辩论队获胜21次;甲作为三辩出场25次,其中辩论队获胜20次;甲作为四辩出场25次,其中辩论队获胜20次.用该样本的频率估计概率,则:
    (1)甲参加比赛时,求该辩论队某场比赛获胜的概率;
    (2)现学校组织6支辩论队,进行单循环比赛,即任意两支队伍均有比赛,规定至少3场获胜才可晋级.社团老师决定每场比赛均派甲上场,已知甲所在辩论队顺利晋级,记其获胜的场数为,求的分布列和数学期望.
    变式20.(2023·吉林长春·长春市第二中学校考模拟预测)某兴趣小组为研究一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,设A=“患有地方性疾病”,B=“卫生习惯良好”.据临床统计显示,,,该地人群中卫生习惯良好的概率为.
    (1)求和,并解释所求结果大小关系的实际意义;
    (2)为进一步验证(1)中的判断,该兴趣小组用分层抽样的方法在该地抽取了一个容量为的样本,利用独立性检验,计算得.为提高检验结论的可靠性,现将样本容量调整为原来的倍,使得能有99.9%的把握肯定(1)中的判断,试确定k的最小值.
    参考公式及数据:;;.
    变式21.(2023·江西宜春·高三统考开学考试)为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员对乙队的每名队员的胜率均为,甲队其余4名队员对乙队每名队员的胜率均为.(注:比赛结果没有平局)
    (1)求甲队明星队员在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;
    (2)求甲乙两队比赛3局,甲队获得最终胜利的概率;
    (3)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员上场的概率.
    40.(2023·湖南长沙·高三长沙一中校考阶段练习)新高考数学试卷中有多项选择题,每道多项选择题有A,B,C,D这四个选项,四个选项中仅有两个或三个为正确选项.题目得分规则为:全部选对的得5分,部分选对的得2分,有选错的得0分.已知测试过程中随机地从四个选项中作选择,每个选项是否为正确选项相互独立.某次多项选择题专项训练中,共有道题,正确选项设计如下:第一题正确选项为两个的概率为,并且规定若第题正确选项为两个,则第题正确选项为两个的概率为;若第题正确选项为三个,则第题正确选项为三个的概率为.
    (1)求第n题正确选项为两个的概率;
    (2)请根据期望值来判断:第二题是选一个选项还是选两个选项,更能获得较高分.
    43.(2023·广东佛山·校联考模拟预测)某地区举行数学核心素养测评,要求以学校为单位参赛,最终学校和学校进入决赛.决赛规则如下:现有甲、乙两个纸箱,甲箱中有4道选择题和2道填空题,乙箱中有3道选择题和3道填空题,决赛由两个环节组成,环节一:要求两校每位参赛同学在甲或乙两个纸箱中随机抽取两题作答,作答后放回原箱;环节二:由学校和学校分别派出一名代表进行比赛.两个环节按照相关比赛规则分别累计得分,以累计得分的高低决定名次.
    (1)环节一结束后,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道从学校抽取12人,其答对题目的平均数为1,方差为1,从学校抽取8人,其答对题目的平均数为1.5,方差为0.25,求这20人答对题目的均值与方差;
    (2)环节二,学校代表先从甲箱中依次抽取了两道题目,答题结束后将题目一起放入乙箱中,然后学校代表再从乙箱中抽取题目,已知学校代表从乙箱中抽取的第一题是选择题,求学校代表从甲箱中取出的是两道选择题的概率.
    【解题方法总结】
    若随机试验可以看成分两个阶段进行,且第一阶段的各试验结果具体结果怎样未知,那么:(1)如果要求的是第二阶段某一个结果发生的概率,则用全概率公式;(2)如果第二个阶段的某一个结果是已知的,要求的是此结果为第一阶段某一个结果所引起的概率,一般用贝叶斯公式.
    1.(2023•甲卷)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为
    A.0.8B.0.4C.0.2D.0.1
    2.(2022•乙卷)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,,,且.记该棋手连胜两盘的概率为,则
    A.与该棋手和甲、乙、丙的比赛次序无关
    B.该棋手在第二盘与甲比赛,最大
    C.该棋手在第二盘与乙比赛,最大
    D.该棋手在第二盘与丙比赛,最大
    3.(2015•新课标Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为
    A.0.648B.0.432C.0.36D.0.312
    考点要求
    考题统计
    考情分析
    (1)了解两个事件相互独立的含义.
    (2)理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.
    2023年甲卷(理)第6题,5分
    2022年乙卷(理)第10题,5分
    2022年I卷第20题,12分
    本节内容是概率的基础知识,考查形式可以是选择填空题,也可以在解答题中出现.出题多会集中在随机事件的关系以对应的概率求解.全概率公式将会是一个新的出题点,思维难度会略大.但整体而言,本节内容在高考中的难度处于中等偏易.
    到家时间
    5:35~5:39
    5:40~5:44
    5:45~5:49
    5:50~5:54
    晚于5:54
    乘地铁到家的概率
    0.10
    0.25
    0.45
    0.15
    0.05
    乘汽车到家的概率
    0.30
    0.35
    0.20
    0.10
    0.05
    相关试卷

    第06讲 事件的相互独立性、条件概率与全概率公式 (精练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考): 这是一份第06讲 事件的相互独立性、条件概率与全概率公式 (精练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含第06讲事件的相互独立性条件概率与全概率公式精练原卷版docx、第06讲事件的相互独立性条件概率与全概率公式精练解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    第06讲 事件的相互独立性、条件概率与全概率公式 (精讲)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考): 这是一份第06讲 事件的相互独立性、条件概率与全概率公式 (精讲)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含第06讲事件的相互独立性条件概率与全概率公式精讲原卷版docx、第06讲事件的相互独立性条件概率与全概率公式精讲解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-备战2024年高考数学一轮专题复习(新教材新高考): 这是一份第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-备战2024年高考数学一轮专题复习(新教材新高考),文件包含第06讲事件的相互独立性条件概率与全概率公式七大题型讲义原卷版docx、第06讲事件的相互独立性条件概率与全概率公式七大题型讲义解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第06讲 事件的相互独立性、条件概率与全概率公式(七大题型)(讲义)-2024年高考数学一轮复习讲义(新教材新高考)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map