终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学一轮复习专题3.9 弧长和扇形的面积【十四大题型】(举一反三)(北师大版)(原卷版)

    立即下载
    加入资料篮
    中考数学一轮复习专题3.9 弧长和扇形的面积【十四大题型】(举一反三)(北师大版)(原卷版)第1页
    中考数学一轮复习专题3.9 弧长和扇形的面积【十四大题型】(举一反三)(北师大版)(原卷版)第2页
    中考数学一轮复习专题3.9 弧长和扇形的面积【十四大题型】(举一反三)(北师大版)(原卷版)第3页
    还剩15页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习专题3.9 弧长和扇形的面积【十四大题型】(举一反三)(北师大版)(原卷版)

    展开

    这是一份中考数学一轮复习专题3.9 弧长和扇形的面积【十四大题型】(举一反三)(北师大版)(原卷版),共18页。

    TOC \ "1-3" \h \u
    \l "_Tc3559" 【题型1 求弧长】 PAGEREF _Tc3559 \h 1
    \l "_Tc4220" 【题型2 利用弧长及扇形面积公式求半径】 PAGEREF _Tc4220 \h 3
    \l "_Tc31762" 【题型3 利用弧长及扇形面积公式求圆心角】 PAGEREF _Tc31762 \h 4
    \l "_Tc5442" 【题型4 求某点的弧形运动路径长度】 PAGEREF _Tc5442 \h 4
    \l "_Tc21516" 【题型5 直接求扇形面积】 PAGEREF _Tc21516 \h 5
    \l "_Tc24078" 【题型6 求图形旋转后扫过的面积】 PAGEREF _Tc24078 \h 6
    \l "_Tc31894" 【题型7 求弓形面积】 PAGEREF _Tc31894 \h 8
    \l "_Tc31808" 【题型8 求其他不规则图形的面积】 PAGEREF _Tc31808 \h 9
    \l "_Tc30894" 【题型9 求圆锥侧面积】 PAGEREF _Tc30894 \h 11
    \l "_Tc10642" 【题型10 求圆锥底面半径】 PAGEREF _Tc10642 \h 12
    \l "_Tc6924" 【题型11 求圆锥的高】 PAGEREF _Tc6924 \h 13
    \l "_Tc5659" 【题型12 求圆锥侧面展开图的圆心角】 PAGEREF _Tc5659 \h 15
    \l "_Tc25256" 【题型13 圆锥的实际问题】 PAGEREF _Tc25256 \h 15
    \l "_Tc32585" 【题型14 圆锥侧面上最短路径问题】 PAGEREF _Tc32585 \h 17
    【知识点 弧长和扇形的面积】
    设⊙O的半径为R,n°圆心角所对弧长为l,
    弧长公式:l=nπR180 (弧长的长度和圆心角大小和半径的取值有关)
    扇形面积公式:S扇形=n360πR2=12lR
    母线的概念:连接圆锥顶点和底面圆周任意一点的线段。
    圆锥体表面积公式:S=πR2+πRl(l为母线)
    【题型1 求弧长】
    【例1】(2023·河北石家庄·石家庄市第四十二中学校考模拟预测)如图,四边形ABCD内接于⊙O,E是DC延长线上一点,如果⊙O的半径为6,∠BCE=60°,那么BCD的长为( )

    A.6πB.12πC.2πD.4π
    【变式1-1】(2023·四川成都·校考三模)“斐波那契螺旋线”(也称“黄金螺旋”)是根据斐波那契数列画出来的螺旋曲线,人类耳朵的形状也符合这种螺旋形状,这种形状的构造帮助人类可以更好地接收声波,从而增强听觉.现依次取边长为1,1,2,3,5……的正方形按如图所示方式拼接,分别以每个正方形的一个顶点为圆心,边长为半径作圆弧,连接形成的螺旋曲线即为“斐波那契螺旋线”.那么前五个正方形内形成的曲线ABCDEF的长度是 .

    【变式1-2】(2023春·山西长治·九年级统考期末)如图,在平行四边形ABCD中,以AB为直径的⊙O与AD相交于点E,与BD相交于点F,DF=BF,已知AB=2,∠C=40°,则FB的长为( )

    A.π3B.2π3C.π9D.2π9
    【变式1-3】(2023·河南濮阳·统考一模)如图,在扇形AOB中,圆心角∠AOB=60°,AO=2,分别以OA,OB的中点E,F为圆心12OA的长为半径作半圆,两个半圆相交于点C,则图中阴影部分的周长为 .

    【题型2 利用弧长及扇形面积公式求半径】
    【例2】(2023春·山西·九年级专题练习)某款“不倒翁”(图1)的主视图是图2,M是“不倒翁”与水平面的接触点,PA,PB分别与AMB所在圆相切于点A,B.将“不倒翁”向右作无滑动滚动,使点B与水平面接触,如图3.若∠P=60°,水平面上点M与点B之间的距离为4π,则AMB所在圆的半径是( )
    A.3B.6C.9D.12
    【变式2-1】(2023春·黑龙江哈尔滨·九年级统考期末)若弧长为4πcm的扇形的面积为8πcm2,则该扇形的半径为 cm.
    【变式2-2】(2023春·湖北黄石·九年级统考期末)如图,△ABC是⊙O的内接三角形,∠BAC=60°,BC的长是4π3,则⊙O的半径是 .
    【变式2-3】(2023·辽宁盘锦·统考一模)如图,在▱ABCD中,以点A为圆心,AB长为半径的圆恰好与CD相切于点C,交AD于点E,若CE的长为2π,则⊙A的半径为 .
    【题型3 利用弧长及扇形面积公式求圆心角】
    【例3】(2023春·云南红河·九年级校考阶段练习)将一个圆分割成三个扇形,它们的面积之比为2:3:4,则这三个扇形的圆心角的度数为( )
    A.80°、120°、160°B.60°、120°、180°
    C.50°、100°、150°D.30°、60°、90°
    【变式3-1】(2023·吉林·统考一模)图1是等边三角形铁丝框ABC,按图2方式变形成以A为圆心,AB长为半径的扇形(图形周长保持不变),则所得扇形ABC的圆心角的度数是( )
    A.45°.B.60°.C.90°π.D.180°π.
    【变式3-2】(2023·内蒙古呼伦贝尔·统考二模)如图1,点C是半圆AB上一个动点,点C从点A开始向终点B运动的整个过程中,AC的弧长l与时间t(秒)的函数关系如图2所示,则点C运动至5秒时,∠AOC的度数为( )

    A.15°B.30°C.45°D.60°
    【变式3-3】(2023·黑龙江哈尔滨·统考三模)一个扇形的面积为10π,弧长为10π3,则该扇形的圆心角的度数为 .
    【题型4 求某点的弧形运动路径长度】
    【例4】(2023春·全国·九年级专题练习)如图,OA⊥OB,C,D分别是射线OA,OB上的动点,CD的长始终为8,点E为CD的中点,则点E的运动路径长为

    【变式4-1】(2023春·浙江金华·九年级校联考阶段练习)如图,量角器的直径与直角三角板ABC的斜边AB重合(AB=6),其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第20秒时点E在量角器上运动路径长是 .

    【变式4-2】(2023·河南信阳·校考三模)如图,把一个含30°角的直角三角板ABC在桌面上沿着直线l无滑动的翻滚一周,若BC=1,∠A=30°,则点A运动的路径长是 .

    【变式4-3】(2023春·四川广元·九年级校考阶段练习)如图,△ABC中,∠ACB=90°,AC=BC=4,点E、F是以斜边AB为直径的半圆的三等分点,点P是EF上一动点,连接PC,点M为PC的中点.当点P从点E运动至点F时,点M运动的路径长为 .
    【题型5 直接求扇形面积】
    【例5】(2023·云南临沧·统考三模)如图,正五边形ABCDE内接于⊙O,其半径为1,作OF⊥BC交⊙O于点F,则图中阴影部分的面积为( )

    A.π3B.2π5C.3π10D.3π5
    【变式5-1】(2023·吉林·九年级校联考学业考试)如图,矩形ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4,分别以点B,D为圆心,AO长为半径画弧,与该矩形的边相交,则图中阴影部分的面积为 .(结果保留π)

    【变式5-2】(2023春·江苏连云港·九年级校考阶段练习)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是 .

    【变式5-3】(2023春·江苏·九年级专题练习)如图,四边形ABCD是长方形,以BC为直径的半圆与AD边只有一个交点,且AB=x,则阴影部分的面积为 .

    【题型6 求图形旋转后扫过的面积】
    【例6】(2023春·江苏盐城·九年级校考阶段练习)如图,已知A、D是⊙O上任意两点,且AD=6,以AD为边作正方形ABCD,若AD边绕点O旋转一周,则BC边扫过的面积为 .

    【变式6-1】(2023·全国·九年级专题练习)如图,在平面直角坐标系中,点A在y轴的正半轴上,OA=1,将OA绕点O顺时针旋转45°到OA1,扫过的面积记为S1,A1A2⊥OA1交x轴于点A2;将OA2绕点O顺时针旋转45°到OA3,扫过的面积记为S2,A3A4⊥OA3交y轴于点A4;将OA4绕点O顺时针旋转45°到OA5,扫过的面积记为S3,A5A6⊥OA5交x轴于点A6;…;按此规律,则S2022的值为 .
    【变式6-2】(2023春·山东临沂·九年级统考期中)在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)

    (1)画出△ABC关于原点对称的△A1B1C1;
    (2)将△ABC绕点B逆时针旋转90°,画出旋转后得到的△A2BC2,并求出此过程中线段BA扫过的区域的面积.(结果保留π)
    【变式6-3】(2023·江苏南京·统考二模)在平面内,将小棒AB经过适当的运动,使它调转方向(调转前后的小棒不一定在同一条直线上),那么小棒扫过区域的面积如何尽可能地小呢?
    已知小棒长度为4,宽度不计.
    方案1:将小棒绕AB中点O旋转180°到B′A′,设小棒扫过区域的面积为S1(即图中灰色区域的面积,下同);
    方案2:将小棒先绕A逆时针旋转60°到AC,再绕C逆时针旋转60°到CB,最后绕B逆时针旋转60°到B′A′,设小棒扫过区域的面积为S2.

    (1)①S1=______,S2=______;(结果保留π)
    ②比较S1与S2的大小.(参考数据:π≈3.14,3≈1.73.)
    (2)方案2可优化为方案3:首次旋转后,将小棒先沿着小棒所在的直线平移再分别进行第2、3次旋转,三次旋转扫过的面积会重叠更多,最终小棒扫过的区域是一个等边三角形.
    ①补全方案3的示意图;
    ②设方案3中小棒扫过区域的面积为S3,求S3.
    (3)设计方案4,使小棒扫过区域的面积S4小于S3,画出示意图并说明理由.
    【题型7 求弓形面积】
    【例7】(2023·山东东营·统考中考真题)如图,AB为⊙O的直径,点C为⊙O上一点,BD⊥CE于点D,BC平分∠ABD.
    (1)求证:直线CE是⊙O的切线;
    (2)若∠ABC=30°,⊙O的半径为2,求图中阴影部分的面积.
    【变式7-1】(2023春·九年级课时练习)如图,AB是⊙O的直径,CD为弦,AB⊥CD,若CD=23,CB=2,则阴影部分的面积是 .
    【变式7-2】(2023·全国·九年级专题练习)如图,将半径为5cm的扇形OAB沿西北方向平移2cm,得到扇形O′A′B′,若∠AOB=90°,则阴影部分的面积为 cm2.
    【变式7-3】(2023·湖北恩施·统考一模)如图,已知⊙O的半径为1,△ABC内接于⊙O,∠ACB=150°,则弓形ACB(阴影部分)的面积为 .(结果保留π或根号)
    【题型8 求其他不规则图形的面积】
    【例8】(2023·山西长治·统考模拟预测)如图,在△ABC中,CA=CB,AB=4,点D是AB的中点,分别以点A、B、C为圆心,AD的长为半径画弧,交线段AC、BC于点E、F、G、H,若点E、F是线段AC的三等分点时,图中阴影部分的面积为( )

    A.82−2πB.162−4πC.82−4πD.162−2π
    【变式8-1】(2023春·全国·九年级专题练习)如图,在四边形ABCD中,∠ABC=90°,BC=6,将四边形ABCD绕点A逆时针旋转30°至AB′C′D′处,则旋转过程中,边BC所扫过的区域(图中阴影部分)的面积为 .

    【变式8-2】(2023春·全国·九年级专题练习)如图,扇形OAB的半径OA=2cm,∠AOB=120°,则以AB为直径的半圆与AB围成的区域(图中阴影部分)的面积是 cm2.

    【变式8-3】(2023·山西太原·山西实验中学校考模拟预测)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于点D,E是边BC的中点,连接DE.若AD,AB的长是方程x2−6x+8=0的两个根,则图中阴影部分的面积为( )

    A.83−4π3B.43−4π3C.43−2π3D.83−2π3
    【题型9 求圆锥侧面积】
    【例9】(2023春·湖北武汉·九年级校考阶段练习)如图等边△ABC内接于⊙O,若⊙O的半径为1,以阴影部分为侧面围成一个圆锥,从剩余部分剪出一个圆作为圆锥底面,则圆锥的全面积为 .
    【变式9-1】(2023·福建南平·校联考模拟预测)如图,要用一个扇形纸片围成一个无底的圆锥(接缝处忽略不计),若该圆锥的底面圆周长为10πcm, 扇形的圆心角的度数是120°,则圆锥的侧面积为 (结果保留π).

    【变式9-2】(2023·河北廊坊·统考一模)如图1,冰激凌的外壳(不计厚度)可近似的看作圆锥,其母线长为12cm,底面圆直径长为8cm.
    (1)这个冰激凌外壳的侧面展开图的形状是 ;
    (2)当冰激凌被吃掉一部分后,其外壳仍可近似的看作圆锥,如图2,其母线长为9cm,则此时冰激凌外壳的侧面积为 cm2.(结果保留π)
    【变式9-3】(2023春·江苏·九年级专题练习)如图是一张直角三角形卡片,∠ACB=90°,AC=BC,点D、E分别在边AB、AC上,AD=2 cm,DB=4 cm,DE⊥AB.若将该卡片绕直线DE旋转一周,则形成的几何体的表面积为 cm2.

    【题型10 求圆锥底面半径】
    【例10】(2023·内蒙古·统考中考真题)如图,正六边形ABCDEF的边长为2,以点A为圆心,AB为半径画弧BF,得到扇形BAF(阴影部分).若扇形BAF正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是 .

    【变式10-1】(2023春·全国·九年级专题练习)如图漏斗,圆锥形内壁的母线OB长为6cm,开口直径为6cm.
    (1)因直管部分堵塞,漏斗内灌满了水,则水深 cm;
    (2)若将贴在内壁的滤纸(忽略漏斗管口处)展开,则展开滤纸的圆心角为 .
    【变式10-2】(2023·内蒙古·统考中考真题)如图,正六边形ABCDEF的边长为2,以点A为圆心,AB为半径画弧BF,得到扇形BAF(阴影部分).若扇形BAF正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是 .

    【变式10-3】(2023·全国·九年级专题练习)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:
    (1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为______;
    (2)连接AD、CD,则⊙D的半径为______;扇形DAC的圆心角度数为______;
    (3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.
    【题型11 求圆锥的高】
    【例11】(2023春·山东济宁·九年级济宁学院附属中学校考期末)如图,正六边形ABCDEF的边长为12,连接AC,以点A为圆心,AC为半径画弧CE,得扇形ACE,将扇形ACE围成一个圆锥,则圆锥的高为( )

    A.35B.63C.105D.2105
    【变式11-1】(2023春·云南·九年级专题练习)如图,矩形纸片ABCD中,AD=12cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为同一个圆锥的侧面和底面,则该圆锥的高为 cm.
    【变式11-2】(2023春·九年级课前预习)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,用图中阴影部分围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为( )
    A.4B.32C.42D.210
    【变式11-3】(2023春·贵州贵阳·九年级贵阳市第二实验中学校考阶段练习)如图,正六边形ABCDEF纸片中,AB=6,分别以B、E为圆心,以6为半径画AC、DF.小欣把扇形BAC与扇形EDF剪下,并把它们粘贴为一个大扇形(B与E重合,F与A重合),她接着用这个大扇形作一个圆锥的侧面,则这个圆锥的高为 .
    【题型12 求圆锥侧面展开图的圆心角】
    【例12】(2023春·全国·九年级专题练习)圆锥的底面半径为40cm,母线长80cm,则它的侧面展开图的圆心角度数是( )
    A.180°B.150°C.120°D.90°
    【变式12-1】(2023春·九年级课时练习)圆锥的底面积是侧面积的18,则该圆锥侧面展开图的圆心角度数是 °.
    【变式12-2】(2023春·云南昆明·九年级校考期中)如图,要用一个扇形纸片围成一个无底盖的圆锥(接缝处忽略不计),若该圆锥的底面圆周长为20πcm,侧面积为240πcm2,则这个扇形的圆心角的度数是( )度.
    A.120°B.135°C.150°D.160°
    【变式12-3】(2023·内蒙古呼和浩特·统考中考真题)圆锥的高为22,母线长为3,沿一条母线将其侧面展开,展开图(扇形)的圆心角是 度,该圆锥的侧面积是 (结果用含π的式子表示).
    【题型13 圆锥的实际问题】
    【例13】(2023·安徽·校联考二模)《九章算术》中有如下问题:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆高5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有 斛.

    【变式13-1】(2023春·全国·九年级专题练习)图1中的某种冰激凌的外包装可以视为圆锥(如图2),制作这种外包装雷要用如图3所示的等腰三角形材料,其中AB=AC,AD⊥BC,将扇形EAF围成圆锥时,AE,AF恰好重合,已知圆锥的底面圆直径ED=6 cm,母线长AD=12 cm.
    (1)求这种加工材料的顶角∠BAC的大小.
    (2)求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)
    【变式13-2】(2023春·九年级课时练习)如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm),电镀时,如果每平方米用锌0.11kg,电镀100个这样的锚标浮筒,需要用多少锌?
    【变式13-3】(2023春·江西南昌·九年级期末)如图1所示,有一种单层绒布料子的台灯灯罩,灯罩的上下都是空的把这个灯罩抽象成一个几何体时,我们称之为圆台,它可以理解为把大的圆锥沿着平行于底面⊙O2的圆面⊙O1裁切掉上面的小圆锥得到的,如图2所示现在要制作这种灯罩,若已知⊙O1的直径AB=12cm,⊙O2的直径CD=32cm,点O、O1、O2共线,OO2与AB、CD都垂直,O1O2=103cm,请问制作一个这样的台灯的灯罩需要多少平方厘米的绒布?(接缝处的布料忽略不计,π≈3.14,结果保留整数)

    【题型14 圆锥侧面上最短路径问题】
    【例14】(2023春·全国·九年级专题练习)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
    A.3B.23C.33D.3
    【变式14-1】(2023春·九年级校考期中)如图1,一只蚂蚁从圆锥底端点A出发,绕圆锥表面爬行一周后回到点A,将圆锥沿母线OA剪开,其侧面展开图如图2所示,若∠AOA′=120°,OA=23,则蚂蚁爬行的最短距离是 .
    【变式14-2】(2023春·九年级课时练习)如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为 .
    【变式14-3】(2023春·辽宁铁岭·九年级校考阶段练习)如图1,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定了,我们把这个比值记作TA,即TA=∠A的对边(底边)∠A的邻边(腰)=BCAC ,当∠A=60°时,如T60°=1.
    (1)T90°= ,T120°= ,TA的取值范围是 ;
    (2)如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T140°≈0.53,T70°≈0.87,T35°≈1.66)

    相关试卷

    中考数学一轮复习 题型举一反三 专题23 图形的相似与位似【十四大题型】(举一反三)(2份打包,原卷版+解析版):

    这是一份中考数学一轮复习 题型举一反三 专题23 图形的相似与位似【十四大题型】(举一反三)(2份打包,原卷版+解析版),文件包含中考数学一轮复习题型举一反三专题23图形的相似与位似十四大题型举一反三原卷版doc、中考数学一轮复习题型举一反三专题23图形的相似与位似十四大题型举一反三解析版doc等2份试卷配套教学资源,其中试卷共90页, 欢迎下载使用。

    人教版九年级数学上册举一反三专题24.9弧长与扇形的面积【八大题型】(原卷版+解析):

    这是一份人教版九年级数学上册举一反三专题24.9弧长与扇形的面积【八大题型】(原卷版+解析),共37页。

    中考数学一轮复习专题3.9 弧长和扇形的面积【十四大题型】(举一反三)(北师大版)(解析版):

    这是一份中考数学一轮复习专题3.9 弧长和扇形的面积【十四大题型】(举一反三)(北师大版)(解析版),共56页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map