数学八年级下册17.1 勾股定理精品ppt课件
展开例1:折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8CM,BC=10CM,求 (1) CF ( 2) EC. (3) AE
例2、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.
例3..如图,在矩形ABCD中,AB=8,BC=4,将矩形沿 AC折叠,点D落在点D′处. 求BF的长及重叠部分△AFC的面积.
解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8-x,在Rt△AFD′中,(8-x)2=x2+42,解得x=3.∴AF=AB-FB=8-3=5,∴S△AFC= AF•BC=10.
练习: 三角形ABC是等腰三角形AB=AC=13,BC=10,将AB向AC方向对折,再将CD折叠到CA边上,折痕为CE,求三角形ACE的面积
【变式题】如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,求AM的长.
解:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2.在Rt△MDB′中,MD2+DB′2=MB′2.∵MB=MB′,∴AB2+AM2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2.即AM=2.
若已知圆柱体高为12 cm,底面半径为3 cm,π取3.
解:在Rt△ABA′中,由勾股定理得
立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据“两点之间线段最短”,确定最短路线.
例4 有一个圆柱形油罐,要以A点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米(已知油罐的底面半径是2 m,高AB是5 m,π取3)?
解:油罐的展开图如图,则AB'为梯子的最短距离. ∵AA'=2×3×2=12, A'B'=5,∴AB'=13. 即梯子最短需13米.
例9.有一个圆柱形油罐,要以A点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米(已知油罐的底面半径是2m,高AB是5m,π取3)?
解:油罐的展开图如图,则AB′为梯子的最短距离. ∵AA′=2×3×2=12, A′B′=5,在Rt△AA′B′中,由勾股定理得即梯子最短需13米.
【分析】立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.
变式.如图,有一个圆柱体,它的高为12厘米,底面半径为3厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的B处的食物,需要爬行的最短路程是多少?(π的值取3)
如图,有一个圆柱体,它的高为12厘米,底面半径为3厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的B处的食物,需要爬行的最短路程是多少?(π的值取3)
1. 为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?
解:如右下图,在Rt△ABC中,∵AC=36cm,BC=108÷4=27(cm).由勾股定理,得AB2=AC2+BC2=362+272=2025=452,∴AB=45cm,∴整个油纸的长为45×4=180(cm).
1、如图,是一个边长为1的正方体硬纸盒,现在A处有一只蚂蚁,想沿着正方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少.
【变式题】看到小蚂蚁终于喝到饮料的兴奋劲儿,小明又灵光乍现,拿出了牛奶盒,把小蚂蚁放在了点A处,并在点B处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程么?
AB12 =102 +(6+8)2 =296,
AB22= 82 +(10+6)2 =320,
AB32= 62 +(10+8)2 =360,
解:由题意知有三种展开方法,如图.由勾股定理得
∴AB1<AB2<AB3.
2.如图是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?
解:台阶的展开图如图,连接AB.
在Rt△ABC中,根据勾股定理得
AB2=BC2+AC2=552+482=5329,
人教版八年级下册17.1 勾股定理精品课件ppt: 这是一份人教版八年级下册17.1 勾股定理精品课件ppt,共17页。PPT课件主要包含了复习回顾,问题1,几何语言,新知探究,探究一,问题2,木板可以斜着过吗,探究二,∴OB1,≈57m等内容,欢迎下载使用。
人教版八年级下册第十七章 勾股定理17.1 勾股定理精品ppt课件: 这是一份人教版八年级下册第十七章 勾股定理17.1 勾股定理精品ppt课件,共24页。PPT课件主要包含了∴OB1,数学问题,直角三角形,勾股定理,实际问题,蚂蚁A→B的路线,侧面展开图,数学思想,立体图形,平面图形等内容,欢迎下载使用。
初中数学人教版八年级下册17.1 勾股定理课前预习ppt课件: 这是一份初中数学人教版八年级下册17.1 勾股定理课前预习ppt课件,共13页。PPT课件主要包含了答案呈现,习题链接等内容,欢迎下载使用。