所属成套资源:中考数学一轮复习之举一反三(华东师大版)
中考数学一轮复习:专题11.6 数的开方章末八大题型总结(培优篇)(华东师大版)(解析版)
展开
这是一份中考数学一轮复习:专题11.6 数的开方章末八大题型总结(培优篇)(华东师大版)(解析版),共20页。
TOC \ "1-3" \h \u
\l "_Tc12923" 【题型1 实数的概念辨析】 PAGEREF _Tc12923 \h 1
\l "_Tc29565" 【题型2 直接求平方根、立方根】 PAGEREF _Tc29565 \h 4
\l "_Tc2019" 【题型3 由平方根、立方根,求该数】 PAGEREF _Tc2019 \h 5
\l "_Tc7713" 【题型4 估算算术平方根的取值范围】 PAGEREF _Tc7713 \h 7
\l "_Tc5125" 【题型5 利用平方根、立方根解方程】 PAGEREF _Tc5125 \h 9
\l "_Tc12201" 【题型6 由平方根、立方根求参数的值】 PAGEREF _Tc12201 \h 11
\l "_Tc12094" 【题型7 实数的大小比较】 PAGEREF _Tc12094 \h 14
\l "_Tc6575" 【题型8 实数与数轴综合运用】 PAGEREF _Tc6575 \h 16
【题型1 实数的概念辨析】
【例1】(2023春·全国·八年级期中)把下列各数分别填入相应的集合里:38,π3,−32,−78,0,−,1.414,−7.
(1)有理数集合:{________________…};
(2)负无理数集合:{______________…};
(3)正实数集合:{________________…}.
【答案】(1)38,−78,0,−,1.414
(2)−32,−7
(3)38,π3,1.414
【分析】(1)根据有理数的定义,即可求解;
(2)根据负无理数的定义,即可求解;
(3)根据正实数的定义,即可求解.
【详解】(1)解:38=2,
有理数集合:{38,−78,0,−,1.414,……};
故答案为:38,−78,0,−,1.414;
(2)解:负无理数集合:{−32,−7,……};
故答案为:−32,−7;
(3)解:正实数集合:{38,π3,1.414,……}.
故答案为:38,π3,1.414.
【点睛】本题考查了有理数及实数的定义及分类,有理数是整数和分数的统称,也可以说,可以化为整数、有限小数和无限不循环小数的数都是有理数;无限不循环小数是无理数;实数是有理数和无理数的总称;大于0的数叫做正数,在正数前面加上负号“﹣”的数叫做负数,0既不是正数,也不是负数.
【变式1-1】(2023秋·河北承德·八年级校考期中)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣π2不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )
A.7个B.6个C.5个D.4个
【答案】B
【分析】根据有理数的分类依此作出判断,即可得出答案.
【详解】解:①没有最小的整数,所以原说法错误;
②有理数包括正数、0和负数,所以原说法错误;
③﹣π2是无理数,所以原说法错误;
④237是无限循环小数,是分数,所以是有理数,所以原说法错误;
⑤无限小数不都是有理数,所以原说法正确;
⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;
⑦非负数就是正数和0,所以原说法错误;
⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误;
故其中错误的说法的个数为6个.
故选:B.
【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.
【变式1-2】(2023春·全国·八年级期中)对于−3+5的叙述,下列说法中正确的是( )
A.它不能用数轴上的点表示出来B.它是一个无理数
C.它比0大D.它的相反数为3+5
【答案】B
【分析】根据数轴的意义,实数的计算,无理数的定义,相反数的定义判断即可.
【详解】A.数轴上的点和实数是一一对应的,故该说法错误,不符合题意;
B.−3+5是一个无理数,故该说法正确,符合题意;
C.−3+5
相关试卷
这是一份中考数学一轮复习:专题14.7 勾股定理章末八大题型总结(拔尖篇)(华东师大版)(解析版),共53页。
这是一份中考数学一轮复习:专题12.9 整式的乘除章末八大题型总结(拔尖篇)(华东师大版)(解析版),共35页。
这是一份中考数学一轮复习:专题3.8 整式的加减章末八大题型总结(培优篇)(华东师大版)(解析版),共20页。