高考数学导数冲满分-专题04 函数的单调性
展开
这是一份高考数学导数冲满分-专题04 函数的单调性,文件包含专题04函数的单调性原卷版docx、专题04函数的单调性解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
已知函数f(x)在区间(a,b)上可导,
(1)如果f′(x)>0,那么函数y=f(x)在(a,b)内单调递增;
(2)如果f′(x)<0,那么函数y=f(x)在(a,b)内单调递减;
(2)如果f′(x)=0,那么函数y=f(x)在(a,b)内是常数函数.
注意:1.在某区间内f′(x)>0(f′(x)f(0),即2x-3>0,解得x>eq \f(3,2),∴原不等式的解集为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2),+∞)).
(6)设函数f(x)为奇函数,且当x≥0时,f(x)=ex-csx,则不等式f(2x-1)+f(x-2)>0的解集为( )
A.(-∞,1) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,\f(1,3))) C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3),+∞)) D.(1,+∞)
答案 D 解析 根据题意,当x≥0时,f(x)=ex-csx,此时有f′(x)=ex+sinx>0,则f(x)在[0,+∞)上为增函数,又f(x)为R上的奇函数,故f(x)在R上为增函数.f(2x-1)+f(x-2)>0⇒f(2x-1)>-f(x-2)⇒f(2x-1)>f(2-x)⇒2x-1>2-x,解得x>1,即不等式的解集为(1,+∞).
【对点训练】
1.已知函数y=f(x)(x∈R)的图象如图所示,则不等式xf′(x)≥0的解集为 .
1.答案 eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(1,2)))∪[2,+∞) 解析 由f(x)图象特征可得,在eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(1,2)))和[2,+∞)上f′(x)≥0, 在 eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),2))上
f′(x)
相关试卷
这是一份高考数学导数冲满分-专题06 构造函数法解决导数不等式问题(一),文件包含专题06构造函数法解决导数不等式问题一原卷版docx、专题06构造函数法解决导数不等式问题一解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份高考数学导数冲满分-专题03 曲线的公切线方程,文件包含专题03曲线的公切线方程原卷版docx、专题03曲线的公切线方程解析版docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
这是一份新高考数学二轮复习导数培优专题04 函数的单调性(含解析),共21页。试卷主要包含了故选B,函数f的导函数f′有下列信息等内容,欢迎下载使用。