|试卷下载
终身会员
搜索
    上传资料 赚现金
    全国各地中考数学试卷分类汇编:动态问题
    立即下载
    加入资料篮
    全国各地中考数学试卷分类汇编:动态问题01
    全国各地中考数学试卷分类汇编:动态问题02
    全国各地中考数学试卷分类汇编:动态问题03
    还剩52页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    全国各地中考数学试卷分类汇编:动态问题

    展开
    这是一份全国各地中考数学试卷分类汇编:动态问题,共55页。试卷主要包含了5,b=1,从而c=1等内容,欢迎下载使用。

    1.(2013江苏苏州,10,3分)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PA+PC的最小值为( ).
    A.B.C.D.2
    【答案】B.
    【解析】如图,作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案.
    解:如图,作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小.
    ∵DP=PA,
    ∴PA+PC=PD+PC=CD.
    ∵B(3,),∴AB=,OA=3,∠B=60°.
    由勾股定理得:OB=2.
    由三角形面积公式得:×OA×AB=×OB×AM,
    即×3×=×2×AM.∴AM=.∴AD=2×=3.
    ∵∠AMB=90°,∠B=60°,
    ∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°.
    ∵DN⊥OA,∴∠NDA=30°,∴AN=×AD=.
    由勾股定理得:DN==.
    ∵C(,0),∴CN=3--=1.
    在Rt△DNC中,由勾股定理得:DC==.
    即PA+PC的最小值是.
    所以应选B.
    【方法指导】本题考查了三角形的内角和定理,轴对称的最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置,题目比较好,难度适中.
    【易错警示】弄不清楚最小值问题,赵不到最短距离而出错.
    2.(2013山东临沂,14,3分)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动.设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )
    【答案】:B.
    3(2013四川南充,10,3分)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s.设P,Q出发秒时,△BPQ的面积为cm2,已知与的函数关系的图象如图2(曲线OM为抛物线的一部分).则下列结论:
    ①AD=BE=5cm;②当0<≤5时,;③直线NH的解析式为;
    ④若△ABE与△QBP相似,则秒.其中正确结论的个数为( )
    A.4 B.3 C.2 D.1
    【答案】:B.
    【解析】据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.
    【方法指导】本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大.
    4.(2013湖北荆门,12,3分)如图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右匀速(注:“匀速”二字为录入者所添加)平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是( )
    P
    l
    x
    O
    S
    x
    O
    S
    x
    O
    S
    x
    O
    S
    A. B. C. D.
    【答案】A
    【解析】为计算的方便,不妨设AB=CD=,AD=1,∠ABC=45°.分别过点A,D向BC作垂线,垂足依次为E,F,如图3,设动直线l移动的速度为x.①当0≤x<1时,S=x2,其图象是开口向上的抛物线的一部分;②当1≤x<2时,S=+1×(x-1)=x-,其图象是直线的一部分;③当2≤x≤3时,S=2-(3-x)2,其图象是开口向下的抛物线的一部分.综上所述,选A.
    E
    F
    l
    P
    【方法指导】判断函数大致图象的试题,一般应先确立函数关系解析式,再根据函数图象及性质做出合理的判断.解答分段函数的图象问题一般遵循以下步骤:①根据自变量的取值范围对函数进行分段;②求出每段的解析式;③由每段的解析式确定每段图象的形状.
    5 (2013山东烟台,12,3分)如图1.E为矩形ABCD边AD上一点,点P从点B沿折线BE—ED—DC运动到点C时停止,点Q从点B沿BC运动到点C时停止.它们的运动速度都是1cm/s.若点P,Q同时开始运动,设运动时间为t(s),⊿BPQ的面积y(cm2).已知y与t的函数关系图像如图2,则下面结论错误的是( )
    A. B.
    C. 当时, D.当时,是等腰三角形
    【答案】A
    【考点解剖】本题是一道典型的动点问题,主要考查了三角函数、等腰三角形的判定、二次函数的解析式、三角形的面积公式,解决本题的关键是能够根据图形中点的位置与相应线段、面积的变化来理解函数图象表达的意义,数形结合,化静为动,从而正确的解决问题.
    【解析】 如图:利用数形结合思想方法,结合图1、图2分别求出BE=BC=10cm,DE=4cm,AE=6cm;然后利用勾股定理求出AB,即可求出sin∠EBC=;当时,根据△BPF∽△EBA可求出BQ边上的高PF,然后利用三角形面积公式即可求出y与t的函数关系式y=,最后利用排除法即可选D.
    【方法指导】点的运动问题,主要表现在运动路径与时间之间的图象关系.解决动点问题时,对题意的理解要清晰,关键是正确获取或处理题中的信息,明确哪些是变化的量,哪些是不变的量.
    填空题
    1. (2013杭州4分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值 (单位:秒)
    【思路分析】求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;
    【解析】∵△ABC是等边三角形,
    ∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,
    ∵QN∥AC,AM=BM.
    ∴N为BC中点,
    ∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,
    分为三种情况:①如图1,
    当⊙P切AB于M′时,连接PM′,
    则PM′=cm,∠PM′M=90°,
    ∵∠PMM′=∠BMN=60°,
    ∴M′M=1cm,PM=2MM′=2cm,
    ∴QP=4cm﹣2cm=2cm,
    即t=2;
    ②如图2,
    当⊙P于AC切于A点时,连接PA,
    则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,
    ∴PM=1cm,
    ∴QP=4cm﹣1cm=3cm,
    即t=3,
    当当⊙P于AC切于C点时,连接PC,
    则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,
    ∴P′N=1cm,
    ∴QP=4cm+2cm+1cm=7cm,
    即当3≤t≤7时,⊙P和AC边相切;
    ③如图1,
    当⊙P切BC于N′时,连接PN′3
    则PN′=cm,∠PM\N′N=90°,
    ∵∠PNN′=∠BNM=60°,
    ∴N′N=1cm,PN=2NN′=2cm,
    ∴QP=4cm+2cm+2cm=8cm,
    即t=8;
    故答案为:t=2或3≤t≤7或t=8.
    【方法指导】本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.
    .2(2013浙江湖州,16,4分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥轴于点M,交直线于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动,求当点P从点O运动到点N时,点B运动的路径长是__▲__.
    【答案】
    【解析】(1)首先,需要证明线段B0Bn就是点B运动的路径(或轨迹),如答图②所示.利用相似三角形可以证明;(2)其次,如答图①所示,利用相似三角形△AB0Bn∽△AON,求出线段B0Bn的长度,即点B运动的路径长.
    OM=,点N在直线y=-x上,AC⊥x轴于点M,则△OMN为等腰直角三角形,ON=OM=×
    =.如答图①所示,设动点P在O点(起点)时,点B的位置为B0,动点P在N点(起点)时,点B的位置为Bn,连接B0Bn.∵AO⊥AB0,AN⊥ABn,∴∠OAC=∠B0ABn,又∵AB0=AO•tan30°,ABn=AN•tan30°,∴AB0:AO=ABn:AN=tan30°,∴△AB0Bn∽△AON,且相似比为tan30°,∴B0Bn=ON•tan30°=×=.现在来证明线段B0Bn就是点B运动的路径(或轨迹).
    如答图②所示,当点P运动至ON上的任一点时,设其对应的点B为Bi,连接AP,ABi,B0Bi.∵AO⊥AB0,AP⊥ABi,∴∠OAP=∠B0ABi,又∵AB0=AO•tan30°,ABi=AP•tan30°,∴AB0:AO=ABi:AP,∴△AB0Bi∽△AOP,∴∠AB0Bi=∠AOP.又∵△AB0Bn∽△AON,∴∠AB0Bn=∠AOP,∴∠AB0Bi=∠AB0Bn,∴点Bi在线段B0Bn上,即线段B0Bn就是点B运动的路径(或轨迹).综上所述,点B运动的路径(或轨迹)是线段B0Bn,其长度为.故答案为:.
    【方法指导】本题考查坐标平面内由相似关系确定的点的运动轨迹,难度很大.本题的要点有两个:首先,确定点B的运动路径是本题的核心,这要求考生有很好的空间想象能力和分析问题的能力;其次,由相似关系求出点B运动路径的长度,可以大幅简化计算,避免陷入坐标关系的复杂运算之中
    3.(2013山东菏泽,14,3分)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时, EP+BP=____________.
    (第14题)
    【答案】12.
    【解析】延长BQ角射线EF于M.
    ∵E、F分别是AB、AC的中点,∴EF//BC,即EM//BC.
    ∴△EQM∽△EQB,∴,
    即,∴EM=12.
    ∵∠CBP的平分线交CE于Q,∴∠PBM=∠CBM,
    ∵EM//BC,∴∠EMB=∠CBM,
    ∴∠PBM=∠EMB,∴PB=PM,所以EP+BP=EM=12.
    【方法指导】本题考查三角形相似、三角形中位线性质、角平分线意义等.本题是一道动点型问题,解题时要善于从“动中求静,联想关联知识”.
    解答题
    1. (2013杭州4分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值 (单位:秒)
    【思路分析】求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;
    【解析】∵△ABC是等边三角形,
    ∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,
    ∵QN∥AC,AM=BM.
    ∴N为BC中点,
    ∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,
    分为三种情况:①如图1,
    当⊙P切AB于M′时,连接PM′,
    则PM′=cm,∠PM′M=90°,
    ∵∠PMM′=∠BMN=60°,
    ∴M′M=1cm,PM=2MM′=2cm,
    ∴QP=4cm﹣2cm=2cm,
    即t=2;
    ②如图2,
    当⊙P于AC切于A点时,连接PA,
    则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,
    ∴PM=1cm,
    ∴QP=4cm﹣1cm=3cm,
    即t=3,
    当当⊙P于AC切于C点时,连接PC,
    则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,
    ∴P′N=1cm,
    ∴QP=4cm+2cm+1cm=7cm,
    即当3≤t≤7时,⊙P和AC边相切;
    ③如图1,
    当⊙P切BC于N′时,连接PN′3
    则PN′=cm,∠PM\N′N=90°,
    ∵∠PNN′=∠BNM=60°,
    ∴N′N=1cm,PN=2NN′=2cm,
    ∴QP=4cm+2cm+2cm=8cm,
    即t=8;
    故答案为:t=2或3≤t≤7或t=8.
    【方法指导】本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.
    2.(2013湖北孝感,25,12分)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.
    (1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
    (2)如图2,若点E在线段BC上滑动(不与点B,C重合).
    ①AE=EF是否总成立?请给出证明;
    ②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.
    3(2013·济宁,23,?分)如图,直线y=-x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).
    (1)求点P运动的速度是多少?
    (2)当t为多少秒时,矩形PEFQ为正方形?
    (3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.
    考点:一次函数综合题.
    分析:(1)根据直线y=-x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;
    (2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;
    (3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.
    解答:解:(1)∵直线y=-x+4与坐标轴分别交于点A、B,
    ∴x=0时,y=4,y=0时,x=8,∴==,
    当t秒时,QO=FQ=t,则EP=t,
    ∵EP∥BO,∴==,∴AP=2t,
    ∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,
    ∴点P运动的速度是每秒2个单位长度;
    (2)如图1,当PQ=PE时,矩形PEFQ为正方形,
    则OQ=FQ=t,PA=2t,∴QP=8-t-2t=8-3t,∴8-3t=t,解得:t=2,
    如图2,当PQ=PE时,矩形PEFQ为正方形,
    ∵OQ=t,PA=2t,∴OP=8-2t,∴QP=t-(8-2t)=3t-8,
    ∴t=3t-8,解得:t=4;
    (3)如图1,当Q在P点的左边时,
    ∵OQ=t,PA=2t,∴QP=8-t-2t=8-3t,
    当t=-=时,
    S矩形PEFQ的最大值为:=4,
    如图2,当Q在P点的右边时,
    ∵OQ=t,PA=2t,∴QP=t-(8-2t)=3t-8,
    ∴S矩形PEFQ=QP•QE=(3t-8)•t=3t2-8t,
    ∵当点P、Q其中一点停止运动时,另一点也停止运动,∴0≤t≤4,
    当t=-=时,S矩形PEFQ的最小,
    ∴t=4时,S矩形PEFQ的最大值为:3×42-8×4=16,
    综上所述,当t=4时,S矩形PEFQ的最大值为:16.
    点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键.
    4.(2013·潍坊,24,13分)如图,抛物线关于直线对称,与坐标轴交于三点,且,点在抛物线上,直线是一次函数的图象,点是坐标原点.
    (1)求抛物线的解析式;
    (2)若直线平分四边形的面积,求的值.
    (3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于两点,问在轴正半轴上是否存在一定点,使得不论取何值,直线与总是关于轴对称?若存在,求出点坐标;若不存在,请说明理由.
    答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),
    由点D(2,1.5)在抛物线上,所以,所以3a+3b=1.5,即a+b=0.5,
    又,即b=-2a,代入上式解得a=-0.5,b=1,从而c=1.5,所以.
    (2)由(1)知,令x=0,得c(0,1.5),所以CD//AB,
    令kx-2=1.5,得l与CD的交点F(),
    令kx-2=0,得l与x轴的交点E(),
    根据S四边形OEFC=S四边形EBDF得:OE+CF=DF+BE,

    (3)由(1)知
    所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为
    假设在y轴上存在一点P(0,t),t>0,使直线PM与PN关于y轴对称,过点M、N分别向y轴作垂线MM1、NN1,垂足分别为M1、N1,因为∠MPO=∠NPO,所以Rt△MPM1∽Rt△NPN1,
    所以,………………(1)
    不妨设M(xM,yM)在点N(xN,yN)的左侧,因为P点在y轴正半轴上,
    则(1)式变为,又yM =k xM-2, yN=k xN-2,
    所以(t+2)(xM +xN)=2k xM xN,……(2)
    把y=kx-2(k≠0)代入中,整理得x2+2kx-4=0,
    所以xM +xN=-2k, xM xN=-4,代入(2)得t=2,符合条件,
    故在y轴上存在一点P(0,2),使直线PM与PN总是关于y轴对称.
    考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.
    点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。问题设计富有梯度、由易到难层层推进,既考查了知识掌握,也考查了方法的灵活应用和数学思想的形成。
    5 .(2013湖北宜昌,22,12分)如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(x﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)
    (1)填空:用含t的代数式表示点A的坐标及k的值:A (t,4) ,k= (k>0) ;
    (2)随着三角板的滑动,当a=时:
    ①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;
    ②当三角板滑至点E为AB的中点时,求t的值;
    (3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.
    .(2013湖南郴州,25,10分)如图,△ABC中,AB=BC,AC=8,tanA=k,P为AC边上一动点,设PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.
    (1)证明:△PCE是等腰三角形;
    (2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;
    (3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值.
    8 .(2013湖南郴州,26,10分)如图,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O为原点,OC、OA所在直线为轴建立坐标系.抛物线顶点为A,且经过点C.点P在线段AO上由A向点O运动,点O在线段OC上由C向点O运动,QD⊥OC交BC于点D,OD所在直线与抛物线在第一象限交于点E.
    (1)求抛物线的解析式;
    (2)点E′是E关于y轴的对称点,点Q运动到何处时,四边形OEAE′是菱形?
    (3)点P、Q分别以每秒2个单位和3个单位的速度同时出发,运动的时间为t秒,当t为何值时,PB∥OD?

    9. .(2013湖南娄底,25,10分)如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H.
    (1)求证:;
    (2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;
    (3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.
    10 .(2013湖南张家界,25,12分)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.
    (1)求直线CD的解析式;
    (2)求抛物线的解析式;
    (3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;
    (4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
    11.(2013上海市,24,12分)如图9,在平面直角坐标系中,顶点为的抛物线经过点和轴正半轴上的点,= 2,.
    (1)求这条抛物线的表达式;
    (2)联结,求的大小;
    (3)如果点在轴上,且△与△相似,求点的坐标.
    12.(2013山西,26,14分)综合与探究:如图,抛物线与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q
    (1)求点A,B,C的坐标。
    (2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。
    (3)当点P在线段EB上运动时,是否存在点 Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。
    解析:(1)当y=0时,,解得,
    ∵点B在点A的右侧,
    ∴点A,B的坐标分别为:(-2,0),(8,0)
    当x=0时,y=-4
    ∴点C的坐标为(0,-4),
    (2)由菱形的对称性可知,点D的坐标为(0,4).
    设直线BD的解析式为y=kx+b,则.解得,k=,b=4.
    ∴直线BD的解析式为.
    ∵l⊥x轴,∴点M,Q的坐标分别是(m,),(m,)
    如图,当MQ=DC时,四边形CQMD是平行四边形.
    ∴()-()=4-(-4)
    化简得:.解得,m1=0,(舍去)m2=4.
    ∴当m=4时,四边形CQMD是平行四边形.
    此时,四边形CQBM是平行四边形.
    解法一:∵m=4,∴点P是OB中点.∵l⊥x轴,∴l∥y轴.
    ∴△BPM∽△BOD.∴.∴BM=DM.
    ∵四边形CQMD是平行四边形,∴DMCQ∴BMCQ.∴四边形CQBM为平行四边形.
    解法二:设直线BC的解析式为y=k1x+b1,则.解得,k1=,b1=-4
    ∴直线BC的解析式为y=x-4
    又∵l⊥x轴交BC于点N.∴x=4时,y=-2. ∴点N的坐标为(4,-2)由上面可知,点M,Q的坐标分别为:(4,2),Q(4,-6).
    ∴MN=2-(-2)=4,NQ=-2-(-6)=4.∴MN=QN.
    又∵四边形CQMD是平行四边形.∴DB∥CQ,∴∠3=∠4,
    又∠1=∠2,∴△BMN≌△CQN.∴BN=CN.
    ∴四边形CQBM为平行四边形.
    (3)抛物线上存在两个这样的点Q,分别是Q1(-2,0),Q2(6,-4).
    13.(2013四川乐山,26,13分)如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且。
    (1)求抛物线C的解析式;
    (2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。
    = 1 \* GB3 ①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
    = 2 \* GB3 ②过线段OA上的两点E、F分别作x轴的垂线,交折线O-B-A于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边△AE1E2、等边△AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,求时间t的值。
    14.(2013上海市,24,12分)如图9,在平面直角坐标系中,顶点为的抛物线经过点和轴正半轴上的点,= 2,.
    (1)求这条抛物线的表达式;
    (2)联结,求的大小;
    (3)如果点在轴上,且△与△相似,求点的坐标.
    15.(2013山西,26,14分)综合与探究:如图,抛物线与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q
    (1)求点A,B,C的坐标。
    (2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。
    (3)当点P在线段EB上运动时,是否存在点 Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。
    解析:(1)当y=0时,,解得,
    ∵点B在点A的右侧,
    ∴点A,B的坐标分别为:(-2,0),(8,0)
    当x=0时,y=-4
    ∴点C的坐标为(0,-4),
    (2)由菱形的对称性可知,点D的坐标为(0,4).
    设直线BD的解析式为y=kx+b,则.解得,k=,b=4.
    ∴直线BD的解析式为.
    ∵l⊥x轴,∴点M,Q的坐标分别是(m,),(m,)
    如图,当MQ=DC时,四边形CQMD是平行四边形.
    ∴()-()=4-(-4)
    化简得:.解得,m1=0,(舍去)m2=4.
    ∴当m=4时,四边形CQMD是平行四边形.
    此时,四边形CQBM是平行四边形.
    解法一:∵m=4,∴点P是OB中点.∵l⊥x轴,∴l∥y轴.
    ∴△BPM∽△BOD.∴.∴BM=DM.
    ∵四边形CQMD是平行四边形,∴DMCQ∴BMCQ.∴四边形CQBM为平行四边形.
    解法二:设直线BC的解析式为y=k1x+b1,则.解得,k1=,b1=-4
    ∴直线BC的解析式为y=x-4
    又∵l⊥x轴交BC于点N.∴x=4时,y=-2. ∴点N的坐标为(4,-2)由上面可知,点M,Q的坐标分别为:(4,2),Q(4,-6).
    ∴MN=2-(-2)=4,NQ=-2-(-6)=4.∴MN=QN.
    又∵四边形CQMD是平行四边形.∴DB∥CQ,∴∠3=∠4,
    又∠1=∠2,∴△BMN≌△CQN.∴BN=CN.
    ∴四边形CQBM为平行四边形.
    (3)抛物线上存在两个这样的点Q,分别是Q1(-2,0),Q2(6,-4).
    16.(2013四川乐山,26,13分)如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且。
    (1)求抛物线C的解析式;
    (2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。
    = 1 \* GB3 ①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
    = 2 \* GB3 ②过线段OA上的两点E、F分别作x轴的垂线,交折线O-B-A于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边△AE1E2、等边△AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,求时间t的值。
    17.(2013·济宁,23,?分)如图,直线y=-x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).
    (1)求点P运动的速度是多少?
    (2)当t为多少秒时,矩形PEFQ为正方形?
    (3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.
    考点:一次函数综合题.
    分析:(1)根据直线y=-x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;
    (2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;
    (3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.
    解答:解:(1)∵直线y=-x+4与坐标轴分别交于点A、B,
    ∴x=0时,y=4,y=0时,x=8,∴==,
    当t秒时,QO=FQ=t,则EP=t,
    ∵EP∥BO,∴==,∴AP=2t,
    ∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,
    ∴点P运动的速度是每秒2个单位长度;
    (2)如图1,当PQ=PE时,矩形PEFQ为正方形,
    则OQ=FQ=t,PA=2t,∴QP=8-t-2t=8-3t,∴8-3t=t,解得:t=2,
    如图2,当PQ=PE时,矩形PEFQ为正方形,
    ∵OQ=t,PA=2t,∴OP=8-2t,∴QP=t-(8-2t)=3t-8,
    ∴t=3t-8,解得:t=4;
    (3)如图1,当Q在P点的左边时,
    ∵OQ=t,PA=2t,∴QP=8-t-2t=8-3t,
    如图2,当Q在P点的右边时,
    ∵OQ=t,PA=2t,∴QP=t-(8-2t)=3t-8,
    ∴S矩形PEFQ=QP•QE=(3t-8)•t=3t2-8t,
    ∵当点P、Q其中一点停止运动时,另一点也停止运动,∴0≤t≤4,
    当t=-=时,S矩形PEFQ的最小,
    ∴t=4时,S矩形PEFQ的最大值为:3×42-8×4=16,
    综上所述,当t=4时,S矩形PEFQ的最大值为:16.
    点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键.
    18.(2013·潍坊,24,13分)如图,抛物线关于直线对称,与坐标轴交于三点,且,点在抛物线上,直线是一次函数的图象,点是坐标原点.
    (1)求抛物线的解析式;
    (2)若直线平分四边形的面积,求的值.
    (3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于两点,问在轴正半轴上是否存在一定点,使得不论取何值,直线与总是关于轴对称?若存在,求出点坐标;若不存在,请说明理由.
    答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),
    由点D(2,1.5)在抛物线上,所以,所以3a+3b=1.5,即a+b=0.5,
    又,即b=-2a,代入上式解得a=-0.5,b=1,从而c=1.5,所以.
    (2)由(1)知,令x=0,得c(0,1.5),所以CD//AB,
    令kx-2=1.5,得l与CD的交点F(),
    令kx-2=0,得l与x轴的交点E(),
    根据S四边形OEFC=S四边形EBDF得:OE+CF=DF+BE,

    (3)由(1)知
    所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为
    假设在y轴上存在一点P(0,t),t>0,使直线PM与PN关于y轴对称,过点M、N分别向y轴作垂线MM1、NN1,垂足分别为M1、N1,因为∠MPO=∠NPO,所以Rt△MPM1∽Rt△NPN1,
    所以,………………(1)
    不妨设M(xM,yM)在点N(xN,yN)的左侧,因为P点在y轴正半轴上,
    则(1)式变为,又yM =k xM-2, yN=k xN-2,
    所以(t+2)(xM +xN)=2k xM xN,……(2)
    把y=kx-2(k≠0)代入中,整理得x2+2kx-4=0,
    所以xM +xN=-2k, xM xN=-4,代入(2)得t=2,符合条件,
    故在y轴上存在一点P(0,2),使直线PM与PN总是关于y轴对称.
    考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.
    点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。问题设计富有梯度、由易到难层层推进,既考查了知识掌握,也考查了方法的灵活应用和数学思想的形成。
    19.(2013江苏苏州,28,9分)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm.点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s.当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F,设点E,F,G运动的时间为t(单位:s).
    (1)当t= ▲ s时,四边形EBFB′为正方形;
    (2)若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;
    (3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.
    【思路分析】(1)若四边形EBFB′为正方形,则BE=BF,即10-t=3t,解得t=2.5.
    (2)由题意得AE=t,BF=3t,CG=1.5t,BE=10-t,FC=12-3t.①证明△EBF∽△FCG;②证明△EBF∽△FGC,通过相似三角形对应边成比例就可以求出两种情况的t的值.
    (3)不存在,只要说明≠3,即点F的运动速度不是点E的运动速度的3倍,实际是3倍.
    【解】
    【方法指导】解答(1)、(2)两问时应注意充分挖掘题目的已知条件,如矩形的性质、正方形的性质等;解答(3)问时应注意解答方式 ,利用相似三角形得出≠3,然后组织好解答过程.
    【易错警示】不能正确探索动点问题,找不到问题的切入点.
    20.(2013江苏扬州,27,12分)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=,P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交CD所在直线于E,设BP=,CE=.
    (1)求与的函数关系式;
    (2)若点P在线段BC上运动时,点E总在线段CD上,求的取值范围;
    (3)如图2,若=4,将△PEC沿PE翻折到△PEG位置,∠BAG=90°,求BP长.
    【思路分析】(1)△BAP ∽ △CPE即可得出与的函数关系式;(2)确定点E与点D重合时的y、x、m的值,即可确定的取值范围;(3)如图,分别延长CE、AG交于点H,则四边形ABCH为矩形,由翻折、勾股定理、一元二次方程可得结果.
    【解】(1)据题意可知ABCD是直角梯形,且PE⊥PA,
    ∴∠BAP+∠BPA =∠BPA+∠CPE=90°,∴∠BAP =∠CPE.
    又∠B=∠C=90°,∴Rt△BAP ∽ Rt△CPE,∴.
    ∵AB=2,BC=, BP=,CP=m-x,CE=,∴.
    ∴与的函数关系式是;
    (2)当点E与点D重合时,=1,∴,
    由,得.
    结合题意,若点P在线段BC上运动时,点E总在线段CD上,则的取值范围是

    (3)如图,分别延长CE、AG交于点H,则四边形ABCH为矩形,由翻折及AP⊥PE得,
    ∠APB =∠APG.进而得到∠GAP =∠APG.∴AG=PG=PC,∴BP=HG.
    在Rt△GHE中,GH=x,GE=y,HE=2- y,由勾股定理得,整理得,
    ,由(1)得,其中=4,可得.
    解得,,故BP长为或2.
    【方法指导】本题是代数与几何的综合题,考查了二次函数、一元二次方程、梯形、矩形等相关知识,解题的关键是能够综合运用二次函数、一元二次方程、梯形、矩形等相关知识.
    【易错警示】不会证明△BAP ∽ △CPE,得不出与的函数关系式.
    21.(2013山东临沂,25,11分)如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别与边AB,BC所在的直线相交,交点分别为E,F.
    (1)当PE⊥AB,PF⊥BC时,如图1,则的值为___________;
    (2)现将三角板绕点P逆时针旋转(0°<<60°)角,如图2,求的值;
    (3)在(2)的基础上继续旋转,当60°<<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.
    【答案】:解:(1).
    (2)过点P作PH⊥AB,PG⊥BC,垂足分别为H,G.
    ∵在矩形ABCD中,∠ABC=90°,∴PH∥BC.
    又∵∠ACB=30°,∴∠APH=∠PCG=30°,
    ∴PH=AP·cs30°=AP,PG=PC·sin30°=PC.
    由题意可知∠HPE=∠GPF=∠,
    ∴Rt△PHE∽Rt△PGF,
    ∴===.
    又∵点P在矩形ABCD对角线交点上,∴AP=PC.
    ∴=.
    (3)变化.
    证明:过点P作PH⊥AB,PG⊥BC,垂足分别为H,G.根据(2),同理可证=.
    ∵AP:PC=1:2,∴=.
    【方法指导】本题主要是动态问题,本题融合了多个知识点,如:相似,特殊的四边形。
    22.(2013四川成都,20,10分)
    如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.
    (1)求证:AC=AD+CE;
    (2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q.
    i)当点P与A,B两点不重合时,求的值;
    ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)
    【思路分析】(1)证△ABD≌△CEB即可;
    (2)i)过点Q作QH⊥BC于点H,利用相似三角形把转化为对应边的比.解题的关键是证明AP=BH.
    ii)利用第i)问中求得的结果求出MQ的长,再反复利用勾股定理求出BQ的长,从而利用三角形的中位线定理求出DQ的中点所经过的路径长.
    【解】(1)证明:∵BD⊥BE,∴∠DBE=90°,即∠ABD+∠EBC=90°.
    ∵∠E+∠EBC=90°,∴∠ABD=∠E.
    又∵∠A=∠C=90°,AD=BC,∴△ABD≌△CEB.∴AD=BC,AB=CE.
    ∵AC=AB+BC,∴AC=AD+CE.
    (2)i)如图2,过点Q作QH⊥BC于点H,则△ADP∽△HPQ,△BHQ∽△BCE.
    ∴,.
    即AD·QH=AP·PH① BC·QH=BH·EC②
    由第(1)问可知,BC=AD=3,AB=EC=5.
    ∴AP·PH=BH·EC.
    设AP=x,BH=y,则PH=AB+BH-AP=5+y-x,
    ∴x(5+y-x)=5y.整理得x2-(5+y)x+5y=0.即(x-5)(x-y)=0.
    ∴x=5或x=y.∵点P与点B不重合,∴舍去x=5.
    当x=y时,PH=5.
    ∴==.
    ii).
    提示:设DQ的中点为O,连结OB.∵∠DBE=90°,∴DO=BO.
    ∴点O在线段DB的垂直平分线上.
    ∴点O所经过的路径是线段DB垂直平分线上的一部分(线段).
    当点P与点A重合时,DQ的中点即是DB的中点O1.
    设AC的中点为M,当点P与点M重合时,如图3,设此时DQ的中点为O2.
    ∵AD=3,AM=4,∴DM=5.
    由i)可知=,∴=.∴MQ=.
    在Rt△DMQ中,DQ==.
    在Rt△ABD中,DB==.
    在Rt△DBQ中,BQ==.
    ∴O1O2=DB=.
    【方法指导】此题在经典题的基础上作了较大的拓展.拓展部分是一个较难的动态探索问题,涉及的知识点有相似三角形、勾股定理等.
    23.(2013浙江台州,24,14分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“好玩三角形”.
    (1)请用直尺和圆规画一个“好玩三角形”;
    (2)如图1,在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;
    (3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB—BC和AD—DC向终点C运动,记点P所经过的路程为s.
    ①当β=45°时,若△APQ是“好玩三角形”,试求的值;
    ②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”,请直接写出tanβ的取值范围.
    (4)(本小题为选做题,做对另加2分,但全卷满分不超过150分)
    依据(3)中的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是“好玩三角形”的个数关系“的真命题(“好玩三角形”的个数限定不能为1).
    F
    E
    M
    N
    【思路分析】(1)首先任意画出一条合适的线段,利用尺规作图作出它的中点,然后以中点为端点用圆规截取一条线段等于上一条线段,最后连结各端点便得到一个“好玩三角形”。
    (2)由于tanA=,可设AC=2x,BC=,然后作出AC边上的中线BD,则CD=x,易得BD=2x,此时AC=BD,∴△ABC是“好玩三角形”。
    (3)①当β=45°时,∠ABC=2β=90°,此时菱形ABCD为正方形,当点P在AB上时,△APQ是等腰直角三角形,不可能是“好玩三角形”. 当点P在BC上时,△APQ有可能是“好玩三角形”,连接AC,交PQ于点E,延长AB交QP的延长线于点F,易证△AEF∽△CEP,可得,若△APQ是“好玩三角形”,有两种可能:底边上的中线等于底边长或腰上的中线等于腰长,须分两种情况讨论。
    ②按照底边上的中线等于底边长或腰上的中线等于腰长,再借助勾股定理及菱形对角线互相垂直,可得.
    (4)结合、、、进行分析个数.
    【解】(1)如图:
    (2)作AC边上的中线BD,设AC=2x,BC=,则CD= x,由勾股定理可知BD=2x,∴AC=BD,即AC边上的中线等于AC的长,∴△ABC是“好玩三角形”.
    (3)①当β=45°时,当点P在AB上时,△APQ是等腰直角三角形,不可能是“好玩三角形”.
    当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,∵PC=CQ,∠ACB=∠ACD,
    ∴AC是QP的垂直平分线,
    ∴AP=AQ,
    ∵∠CAB=∠ACP,∠AEF=∠CEP,
    ∴△AEF∽△CEP,
    ∴,
    ∵PE=CE,
    ∴,
    1)当底边PQ与它的中线AE相等,即AE=PQ时,

    ∴.
    2)当腰AP与它的中线QM相等,即AP=QM时,
    作QN⊥AP于N,
    ∴MN=AN=,
    ∴,
    ∴tan∠APQ=,
    ∴tan∠APE=,
    ∴.
    ②.
    (4)选做题:
    若,则在点P,Q的运动过程中,使△APQ成为“好玩三角形”的个数为2.
    或若,则在点P,Q的运动过程中,使△APQ成为“好玩三角形”的个数为1.
    或若,则在点P,Q的运动过程中,使△APQ成为“好玩三角形”的个数为0.
    或若,则在点P,Q的运动过程中,使△APQ成为“好玩三角形”的个数为无数个.
    【方法指导】本题考查了尺规作图、勾股定理、相似三角形的性质和判定、三角函数等知识点,本题综合了阅读理解和动态问题,在解决的过程中,用到了分类讨论的数学思想解题要求能力较高。
    8.(2013浙江湖州,24,8分)如图①,O为坐标原点,点B在轴的正半轴上,四边形OACB是平行四边形,=,反比例函数()在第一象限内的图象经过点A,与BC交于点F.
    (1)若OA=10,求反比例函数的解析式;
    (2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;
    (3)在(2)的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA、PO.是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
    【思路分析】(1)先过点A作AH⊥OB,根据sin∠AOB= ,OA=10,求出AH和OH的值,从而得出A点坐标,再把它代入反比例函数中,求出k的值,即可求出反比例函数的解析式;
    (2)先设OA=a(a>0),过点F作FM⊥x轴于M,根据sin∠AOB=,得出AH= a,OH=a,求出S△AOH的值,根据S△AOF=12,求出平行四边形AOBC的面积,根据F为BC的中点,求出S△OBF=6,根据BF=a,∠FBM=∠AOB,得出S△BMF=BM•FM,S△FOM=6+a2,再根据点A,F都在y=的图象上,S△AOH=k,求出a,最后根据S平行四边形AOBC=OB•AH,得出OB=AC= ,即可求出点C的坐标;
    (3)分别根据当∠APO=90°时,在OA的两侧各有一点P,得出P1,P2,当∠PAO=90°时,求出P3,当∠POA=90°时,求出P4即可.
    【解】((1)如下图,过点A作AH⊥OB于H.
    ∵=,OA=10,
    ∴AH=8,OH=6.
    ∴A点坐标为(6,8).根据题意,8=,可得=48.
    ∴反比例函数的解析式为:(>0).
    (2)设OA=(>0),如上图,过点F作FM⊥轴于M.
    ∵=,∴AH=,OH=.
    ∴==.
    ∵=12,∴=24.
    ∵F为BC的中点,∴=6.
    ∵BF=,∠FBM=∠AOB,
    ∴FM=,BM=.
    ∴===.
    ∴=+=6+.
    ∵点A、F都在的图像上,
    ∴==.
    ∴=6+,∴=.∴OA=.
    ∴AH=,OH=.
    ∵=OB·AH=24,∴OB=AC=.
    ∴C(,).(3)
    (3)存在三种情况:
    当∠APO=90°时,在OA的两侧各有一点P,分别为:
    P1(,),P2(,);
    当∠PAO=90°时,P3(,);
    当∠POA=90°时,P4(,).
    【方法指导】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,要注意运用数形结合的思想.
    【易错警示】本题第(3)问有三种情况,不要漏解。
    24.(2013重庆,26,12分)已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图①,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图②,△GMN从图①的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:
    (1)在整个运动过程中,当点G在线段AE上时,求t的值.
    (2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形.若存在,求出t的值;若不存在,说明理由.
    (3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.
    【思路分析】(1)由Rt△ABE与Rt△GMN中已知的边可知两个三角形相似,当点G在AE上时,GM在AE上,点M与E重合,所以求出MN的值就是所求t的值;(2)在△APQ中由任意两边相等,分三种情况讨论解答,要注意在每种情况中把相等的两边用t的式子表示,从而建立关于t的方程使问题得解;(3)结合点E,F的位置和点G在AE上时的情况,对问题分段解答.
    【解】(1)在△GMN中,∠NGM=90°,NG=6,MG=8,由勾股定理,得
    MN=.
    ∵,,
    ∴∠AEB=∠GMN,
    ∴当点G运动到AE上时,点M与点E重合,运动路程为10,
    又∵△GMN运动速度为每秒一个单位长度,
    ∴t=10.
    (2)存在满足条件的t.理由如下:
    在△ABE中,∠ABE=90°,AB=12,BE=16,由勾股定理,得
    .
    由(1)可知,∠AEB=∠GMN,∴AE∥GM,∴∠NQE=∠NGM=90°,
    ∴∠NQE=∠B=90°,
    又∵∠AEB=∠NEQ,∴△ABE∽△NQE.
    ∴,即,
    ∴,∴.
    ①当AP=PQ时,如图①,过点P作PH⊥AE于点H,得AH=AQ=.
    由△APH∽△EAB,得,即,解得.
    ②当AP=AQ时,如图②,由,解得.
    ③当AQ=PQ时,如图③,过点Q作QK⊥AD于K,可得AK=AP=.
    由△AQK∽△EAB,得,即,解得.
    综上所述,当或或时,△APQ是等腰三角形.
    (3)
    解析:当0<t≤7时,重合部分是一个直角三角形,其斜边长为t,两直角边分别长为和,;当7<t≤10时,重合部分是一个四边形,如图①所示,设GN与AF交于点K,则△KNF是一个等腰三角形,底边FN=t-7,作KR⊥FN于点R,则FR=,由△FKR∽△FAB,可得高KR=,∴△KNF的面积为.∴;当10<t≤时,重合部分是一个四边形,此时点G在△AFE内部,如图②所示,;当<t≤16时,重合部分是一个三角形,此时点G在△ABF内部,FN=EN-EF=t-7,FM=MN-FN=10-(t-7)= 17-t,此时△KMF∽△AEF,而△AEF的面积为42,∴,∴.
    【方法指导】本题是一道动态问题,以矩形为背景,结合直角三角形的移动,考查学生对等腰三角形的存在性分类讨论的能力,考查了相似形或三角函数知识的应用,同时也考查了对图形变化的空间感知能力,这里要求学生的综合应用数学知识解决问题的能力较强.(1)解答动态问题,要善于从动中找出“静”的信息;(2)解答存在性问题,一般是假设成立,找出数量关系,建立方程,解答并验证后,得到结论;(3)动态图形重合问题,在图形的形状每发生一次改变,自变量的取值也应作相应的变化.
    25.(2013湖北荆门,23,10分)如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M,C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.
    (1)求证:OF∥BE;
    (2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
    (3)延长DC,FP交于点G,连接OE并延长交直线DC于H(图2),问是否存在点P,使△EFO∽△EHG(E,F,O分别与E,H,G为对应点),如果存在,试求(2)中x和y的值,如果不存在,请说明理由.
    M
    O
    E
    第23题图1
    P

    【思路分析】(1)连结OE,证同位角相等或同旁内角互补即可;
    (2)将直角梯形ABPF分割成矩形和直角三角形,然后利用勾股定理即可求出y与x之间的函数关系式;
    (3)欲使△EFO∽△EHG,则只需∠EFO=∠EHG.这一等式成立的条件之一是∠EFO=2∠EOF.
    【解】(1)证明:连接OE.
    ∵FE,FA是⊙O的切线,∴∠OAF=∠OEF=90°.
    又∵FO=FO,OA=OE.∴△FAO≌△FEO.
    ∴∠AOF=∠EOF=∠AOE.
    ∵∠ABE=∠AOE,∴∠AOF=∠ABE.
    ∴OF∥BE.
    (2)过F作FQ⊥BC于Q,
    ∴PQ=BP-AF=x-y,PF=PE+EF=x+y.
    在Rt△PFQ中,FQ2+PQ2=PF2.
    ∴22+(x-y)2=(x+y)2.
    化简得y=(1<x<2).
    (3)存在这样的P点.
    ∠EOF=∠AOF,∴∠EHG=∠EOA=2∠EOF.
    ∵OH⊥FG,∴∠OEF=∠HEG=90°.
    当∠EFO=∠EHG=2∠EOF时,即∠EOF=30°时,△EFO∽△EHG.
    此时Rt△AFO中,y=AF=OA·tan30°=.
    ∴x==.
    ∴当x=,y=时,△EFO∽△EHG.
    【方法指导】圆的切线的判定方法有三种:(1)和圆只有一个公共点的直线是圆的切线;这种方法不常用.(2)若圆心到直线的距离等于圆的半径,则这条直线是圆的切线;这种证明方法通常是在直线和圆没有公共点时,通过“作垂直,证半径”的方法来证明直线是圆的切线.(3)经过半径外端并且垂直于这条半径的直线是圆的切线.这种证明方法通常是在直线和圆有公共点,通过“连半径,证垂直”的方法来证明直线是圆的切线.
    26、(2013深圳,23,9分)如图7—①,已知直线过点A(m,0),B(0,n),且m+n=20(其中)
    当m为何值时,的面积最大?最大值是多少?
    如图7—②,在(1)的条件下,函数的图像与直线交于点C、D,若,求的值
    在(2)的条件下,将以每秒1个单位的速度沿轴的正方向平移,如图7—③,设它与重叠部分的面积为,请求出与运动时间(秒)之间的函数关系式()
    【答案】(1)设的面积为,则:

    ∵,抛物线的开口向下,有最大值
    ∴当时,
    (2)在(1)的条件下,、,则直线的解析式为
    由于直线:和曲线的图像均关于直线对称,则它们的交点、亦关于直线对称,且
    设,则,则
    由且知:
    故 则 ,且
    又点在直线:上,将点代入直线方程
    有 故 因而
    又点在曲线上,将点代入得:
    故 即为所求
    (3)如图7—③,平移前的三角形为,平移后的三角形为,直线交于点,交于点,则与重叠部分的面积即为的面积,即 ;设秒后,,则
    根据平移的性质有:∥,则
    而,故

    ∵∥,∴

    由(2)知
    由 有:
    故: 即为所求
    【解析】(1)由m+n=20可得用含的代数式表示的等式:,再根据面积公式建立函数关系式,将代入,然后根据二次函数知识来求出最值。
    (2)要求的值,只需求出点或点的坐标却可。可设,可用含的代数式表示,由反比例函数及直线均关于直线对称的性质,知,再根据可知:,而,故可方便的求出的值,从而求出和点,则可求
    (3)根据平移的性质,平称前后的图形全等,对应边平行且相等,对应点的连线平行且相等。所求重叠部分的三角形与相似。根据相似三角形面积的比等于相似比的平方,建立对应的函数关系式。为了方便求出相似比,需画出平移前的,并进行必要的转化。
    【方法指导】本题属于函数综合题。综合了一次函数、反比例函数、二次函数等相关知识,图形简洁,但综合性强,递进设问,梯度恰当。本题主要考查了图形与坐标、二次函数及最值、点与函数图像的关系、用待定系数法求函数的解析式、特殊函数的对称性、平移的性质、相似三角形的判定、性质及动态几何等内容。虽说综合性强,但计算量不大。
    27. (2013江苏泰州,24,10分) 如图,在平面直角坐标系xOy中,直线与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).
    (1)求该反比例函数关系式;
    (2)将直线向上平移后与反比例函数在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.
    【思路分析】(1)根据点B是两图象交点,将B(m,2)代入直线,求出B点坐标,即可知反比例函数解析式;(2)设平移后的直线的函数关系式为:,根据面积与函数关系,转化为一元二次方程求出c点坐标即可.
    【解】(1)∵点B(m,2) 在直线上

    解得: ∴点B(4,2)
    又∵点B(4,2)在反比例函数的图象上

    ∴反比例函数关系式为:
    (2) 设平移后的直线的函数关系式为:,C点坐标为
    ∵△ABC的面积为18

    化简,得:
    解得:
    ∵∴ ∴C点坐标为(1,8)
    把C点坐标(1,8)代入得: , ∴
    ∴平移后的直线的函数关系式为:
    【方法指导】本题考查了一次函数与反比例函数图象与性质 ,平面直角坐标系中面积计算、平移,方程思想.这里可以探究到两直线平行,两条直线对应的数学表达式的自变量系数k相同.
    考点:
    二次函数综合题.
    专题:
    综合题.
    分析:
    (1)取AB的中点G,连接EG,利用SSS能得到△AGE与△ECF全等;
    (2)①在AB上截取AM=EC,证得△AME≌△ECF即可证得AE=EF;
    ②过点F作FH⊥x轴于H,根据FH=BE=CH设BH=a,则FH=a﹣1,然后表示出点F的坐标,根据点F恰好落在抛物线y=﹣x2+x+1上得到有关a的方程求得a值即可求得点F的坐标;
    解答:
    (1)解:如图1,取AB的中点G,连接EG.
    △AGE与△ECF全等.
    (2)①若点E在线段BC上滑动时AE=EF总成立.
    证明:如图2,在AB上截取AM=EC.
    ∵AB=BC,
    ∴BM=BE,
    ∴△MBE是等腰直角三角形,
    ∴∠AME=180°﹣45°=135°,
    又∵CF平分正方形的外角,
    ∴∠ECF=135°,
    ∴∠AME=∠ECF.
    而∠BAE+∠AEB=∠CEF+∠AEB=90°,
    ∴∠BAE=∠CEF,
    ∴△AME≌△ECF.
    ∴AE=EF.
    ②过点F作FH⊥x轴于H,
    由①知,FH=BE=CH,
    设BH=a,则FH=a﹣1,
    ∴点F的坐标为F(a,a﹣1)
    ∵点F恰好落在抛物线y=﹣x2+x+1上,
    ∴a﹣1=﹣a2+a+1,
    ∴a2=2,(负值不合题意,舍去),
    ∴.
    ∴点F的坐标为.
    点评:
    本题考查了二次函数的综合知识,题目中涉及到了全等的知识,还渗透了方程思想,是一道好题.
    考点:
    二次函数综合题.
    分析:
    (1)根据题意易得点A的横坐标与点C的相同,点A的纵坐标即是线段AC的长度;把点A的坐标代入直线OA的解析式来求k的值;
    (2)①求得抛物线y1的顶点坐标,然后把该坐标代入函数y=,若该点满足函数解析式y=,即表示该顶点在函数y=图象上;反之,该顶点不在函数y=图象上;
    ②如图1,过点E作EK⊥x轴于点K.则EK是△ACB的中位线,所以根据三角形中位线定理易求点E的坐标,把点E的坐标代入抛物线y1=x(x﹣t)即可求得t=2;
    (3)如图2,根据抛物线与直线相交可以求得点D横坐标是+4.则t+4=+4,由此可以求得a与t的关系式.
    解答:
    解:(1)∵点C的坐标为(t,0),直角边AC=4,
    ∴点A的坐标是(t,4).
    又∵直线OA:y2=kx(k为常数,k>0),
    ∴4=kt,则k=(k>0).
    (2)①当a=时,y1=x(x﹣t),其顶点坐标为(,﹣).
    对于y=来说,当x=时,y=×=﹣,即点(,﹣)在抛物线y=上.
    故当a=时,抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;
    ②如图1,过点E作EK⊥x轴于点K.
    ∵AC⊥x轴,
    ∴AC∥EK.
    ∵点E是线段AB的中点,
    ∴K为BC的中点,
    ∴EK是△ACB的中位线,
    ∴EK=AC=2,CK=BC=2,
    ∴E(t+2,2).
    ∵点E在抛物线y1=x(x﹣t)上,
    ∴(t+2)(t+2﹣t)=2,
    解得t=2.
    (3)如图2,,则x=ax(x﹣t),
    解得x=+4,或x=0(不合题意,舍去)..
    故点D的横坐标是+t.
    当x=+t时,|y2﹣y1|=0,由题意得t+4=+t,
    解得a=(t>0).
    点评:
    本题考查了坐标与图形的性质、二次函数图象上点的坐标特征、一次函数与二次函数交点坐标等知识点.解题时,注意“数形结合”数学思想的应用.
    考点:
    等腰三角形的判定与性质;二次函数的最值;解直角三角形.
    分析:
    (1)根据等边对等角可得∠A=∠C,然后根据两直线平行,同位角相等求出∠CPE=∠A,从而得到∠CPE=∠C,即可得证;
    (2)根据等腰三角形三线合一的性质求出CM=CP,然后求出EM,同理求出FN、BH的长,再根据结果整理可得EM+FN=BH;
    (3)分别求出EM、FN、BH,然后根据S△PCE,S△APF,S△ABC,再根据S=S△ABC﹣S△PCE﹣S△APF,整理即可得到S与x的关系式,然后利用二次函数的最值问题解答.
    解答:
    (1)证明:∵AB=BC,
    ∴∠A=∠C,
    ∵PE∥AB,
    ∴∠CPE=∠A,
    ∴∠CPE=∠C,
    ∴△PCE是等腰三角形;
    (2)解:∵△PCE是等腰三角形,EM⊥CP,
    ∴CM=CP=,tanC=tanA=k,
    ∴EM=CM•tanC=•k=,
    同理:FN=AN•tanA=•k=4k﹣,
    由于BH=AH•tanA=×8•k=4k,
    而EM+FN=+4k﹣=4k,
    ∴EM+FN=BH;
    (3)解:当k=4时,EM=2x,FN=16﹣2x,BH=16,
    所以,S△PCE=x•2x=x2,S△APF=(8﹣x)•(16﹣2x)=(8﹣x)2,S△ABC=×8×16=64,
    S=S△ABC﹣S△PCE﹣S△APF,
    =64﹣x2﹣(8﹣x)2,
    =﹣2x2+16x,
    配方得,S=﹣2(x﹣4)2+32,
    所以,当x=4时,S有最大值32.
    点评:
    本题考查了等腰三角形的判定与性质,平行线的性质,锐角三角函数,二次函数的最值问题,表示出各三角形的高线是解题的关键,也是本题的难点.
    考点:
    二次函数综合题.
    分析:
    (1)根据顶点式将A,C代入解析式求出a的值,进而得出二次函数解析式;
    (2)利用菱形的性质得出AO与EE′互相垂直平分,利用E点纵坐标得出x的值,进而得出BC,EO直线解析式,再利用两直线交点坐标求法得出Q点坐标,即可得出答案;
    (3)首先得出△APB∽△QDO,进而得出=,求出m的值,进而得出答案.
    解答:
    解:(1)∵A(0,2)为抛物线的顶点,
    ∴设y=ax2+2,
    ∵点C(3,0),在抛物线上,
    ∴9a+2=0,
    解得:a=﹣,
    ∴抛物线为;y=﹣x2+2;
    (2)如果四边形OEAE′是菱形,则AO与EE′互相垂直平分,
    ∴EE′经过AO的中点,
    ∴点E纵坐标为1,代入抛物线解析式得:
    1=﹣x2+2,
    解得:x=±,
    ∵点E在第一象限,
    ∴点E为(,1),
    设直线BC的解析式为y=kx+b,把B(1,2),C(3,0),代入得:

    解得:,
    ∴BC的解析式为:y=﹣x+3,
    将E点代入y=ax,可得出EO的解析式为:y=x,
    由,
    得:,
    ∴Q点坐标为:(,0),
    ∴当Q点坐标为(,0)时,四边形OEAE′是菱形;
    (3)法一:设t为m秒时,PB∥DO,又QD∥y轴,则有∠APB=∠AOE=∠ODQ,
    又∵∠BAP=∠DQO,则有△APB∽△QDO,
    ∴=,
    由题意得:AB=1,AP=2m,QO=3﹣3m,
    又∵点D在直线y=﹣x+3上,∴DQ=3m,
    因此:=,解得:m=,
    经检验:m=是原分式方程的解,
    ∴当t=秒时,PB∥OD.
    法二:作BH⊥OC于H,则BH=AO=2,OH=AB=1,HC=OC﹣OH=2,
    ∴BH=HC,∴∠BCH=∠CBH=45°,
    易知DQ=CQ,
    设t为m秒时PB∥OE,则△ABP∽△QOD,
    ∴=,易知AP=2m,DQ=CQ=3m,QO=3﹣3m,
    ∴=,
    解得m=,经检验m=是方程的解,
    ∴当t为秒时,PB∥OD.
    26点评:
    此题主要考查了菱形的判定与性质以及顶点式求二次函数解析式以及相似三角形的判定与性质等知识,根据数形结合得出△APB∽△QDO是解题关键.
    考点:
    相似形综合题.
    分析:
    (1)由相似三角形,列出比例关系式,即可证明;
    (2)首先求出矩形EFPQ面积的表达式,然后利用二次函数求其最大面积;
    (3)本问是运动型问题,要点是弄清矩形EFPQ的运动过程:
    (I)当0≤t≤2时,如答图①所示,此时重叠部分是一个矩形和一个梯形;
    (II)当2<t≤4时,如答图②所示,此时重叠部分是一个三角形.
    解答:
    (1)证明:∵矩形EFPQ,
    ∴EF∥BC,∴△AHF∽△ADC,∴,
    ∵EF∥BC,∴△AEF∽△ABC,∴,
    ∴.
    (2)解:∵∠B=45°,∴BD=AD=4,∴CD=BC﹣BD=5﹣4=1.
    ∵EF∥BC,∴△AEH∽△ABD,∴,
    ∵EF∥BC,∴△AFH∽△ACD,∴,
    ∴,即,∴EH=4HF,
    已知EF=x,则EH=x.
    ∵∠B=45°,∴EQ=BQ=BD﹣QD=BD﹣EH=4﹣x.
    S矩形EFPQ=EF•EQ=x•(4﹣x)=﹣x2+4x=﹣(x﹣)2+5,
    ∴当x=时,矩形EFPQ的面积最大,最大面积为5.
    (3)解:由(2)可知,当矩形EFPQ的面积最大时,矩形的长为,宽为4﹣×=2.
    在矩形EFPQ沿射线AD的运动过程中:
    (I)当0≤t≤2时,如答图①所示.
    设矩形与AB、AC分别交于点K、N,与AD分别交于点H1,D1.
    此时DD1=t,H1D1=2,
    ∴HD1=HD﹣DD1=2﹣t,HH1=H1D1﹣HD1=t,AH1=AH﹣HH1=2﹣t,.
    ∵KN∥EF,∴,即,得KN=(2﹣t).
    S=S梯形KNFE+S矩形EFP1Q1=(KN+EF)•HH1+EF•EQ1
    = [(2﹣t)+]×t+(2﹣t)
    =t2+5;
    (II)当2<t≤4时,如答图②所示.
    设矩形与AB、AC分别交于点K、N,与AD交于点D2.
    此时DD2=t,AD2=AD﹣DD2=4﹣t,
    ∵KN∥EF,∴,即,得KN=5﹣t.
    S=S△AKN=KN•AD2
    =(5﹣t)(4﹣t)
    =t2﹣5t+10.
    综上所述,S与t的函数关系式为:
    S=.
    点评:
    本题是运动型相似三角形压轴题,考查了相似三角形的判定与性质、二次函数的表达式与最值、矩形、等腰直角三角形等多个知识点,涉及考点较多,有一定的难度.难点在于第(3)问,弄清矩形的运动过程是解题的关键.
    考点:
    二次函数综合题.
    分析:
    (1)利用待定系数法求出直线解析式;
    (2)利用待定系数法求出抛物线的解析式;
    (3)关键是证明△CEQ与△CDO均为等腰直角三角形;
    (4)如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.
    利用轴对称的性质、两点之间线段最短可以证明此时△PCF的周长最小.
    如答图③所示,利用勾股定理求出线段C′C″的长度,即△PCF周长的最小值.
    解答:
    解:(1)∵C(0,1),OD=OC,∴D点坐标为(1,0).
    设直线CD的解析式为y=kx+b(k≠0),
    将C(0,1),D(1,0)代入得:,
    解得:b=1,k=﹣1,
    ∴直线CD的解析式为:y=﹣x+1.
    (2)设抛物线的解析式为y=a(x﹣2)2+3,
    将C(0,1)代入得:1=a×(﹣2)2+3,解得a=.
    ∴y=(x﹣2)2+3=x2+2x+1.
    (3)证明:由题意可知,∠ECD=45°,
    ∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°,
    ∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称,
    ∴点E的坐标为(4,1).
    如答图①所示,设对称轴(直线x=2)与CE交于点F,则F(2,1),
    ∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.
    又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,
    ∴∠QEC=∠QCE=∠ODC=∠OCD=45°,
    ∴△CEQ∽△CDO.
    (4)存在.
    如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.
    (证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.
    由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;
    而F′C″+F′P′+P′C′是点C′,C″之间的折线段,
    由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,
    即△P′CF′的周长大于△PCE的周长.)
    如答图③所示,连接C′E,
    ∵C,C′关于直线QE对称,△QCE为等腰直角三角形,
    ∴△QC′E为等腰直角三角形,
    ∴△CEC′为等腰直角三角形,
    ∴点C′的坐标为(4,5);
    ∵C,C″关于x轴对称,∴点C″的坐标为(﹣1,0).
    过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,
    在Rt△C′NC″中,由勾股定理得:C′C″===.
    综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为.
    点评:
    本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形、等腰直角三角形、勾股定理、轴对称的性质等重要知识点,涉及考点较多,有一点的难度.本题难点在于第(4)问,如何充分利用轴对称的性质确定△PCF周长最小时的几何图形,是解答本题的关键.
    相关试卷

    全国各地中考数学试卷分类汇编:操作探究: 这是一份全国各地中考数学试卷分类汇编:操作探究,共21页。试卷主要包含了 将正方形图1作如下操作等内容,欢迎下载使用。

    全国各地中考数学试卷分类汇编:概率: 这是一份全国各地中考数学试卷分类汇编:概率,共56页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    全国各地中考数学试卷分类汇编:开放性问题: 这是一份全国各地中考数学试卷分类汇编:开放性问题,共9页。试卷主要包含了我们规定,5,b=1,从而c=1,先化简,再求值等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map