河南省2023_2024学年高一数学上学期期中试题
展开1.设集合A={x∈N*|-1
2.下列命题为真命题的是( )
A.若a>b>0,则ac2>bc2B.若aC.若a>b>0,c<0,则ca>cbD.若a3.设a=(35)25,b=(25)35,c=(25)25,则( )
A.a
A.1010.1B.10.1C.lg10.1D.10-10.1
5.已知函数fx=ax-2-12(a>0,且a≠1),无论a取何值,fx图象恒过定点P.若点P在幂函数g(x)的图象上,则幂函数的图象大致是( )
A.B.C.D.
6.已知x>0,y>0且2x+1y=1,若2x+y
C.(-9,-1)D.[-9,1]
7.已知函数f(x)=a-3x+2a,x<1ax2+(a+1)x,x≥1在R上是单调的函数,则实数a的取值范围是( )
A.(-∞,-13]B.(3,4]C.(-∞,-13]∪(3,4]D.(-∞,-13)∪(3,4]
8.设函数f(x)的定义域为R,f(x-1)为奇函数,f(x+1)为偶函数,当x∈(-1,1)时,fx=-ⅇx,则( )
A.f3=-1B.f-2=-1C.f(x+6)为奇函数D.f2x=f(2x+8)
二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)
9.下列说法中正确的有( )
A.全体奇数构成的集合可以表示为{x|x=2k+1,k∈Z}
B.“x>2”是“x>1”的充分不必要条件
C.集合{x|y=x2+1}与集合{(x,y)|y=x2+1}的交集是空集
D.命题“∀x>1,x2﹣x>0”的否定是“∃x0≤1,x02-x0≤0”
10.给出以下四个判断,其中正确的是( )
A.函数y=x-22x+1(x≥1)的值域为[-13,12)
B.若函数f(2x-1)的定义域为[-1,1],则函数y=f(x-1)x-1的定义域为(1,2]
C.函数fx=x2定义域A⊆R,值域B={4},则满足条件的fx有3个
D.若函数f(x+1x)=x2+1x2,且fm=4,则实数m的值为6
11.下列命题中的真命题有( )
A.当x>1时,x+1x-1的最小值是3
B.x2+5x2+4的最小值是2
C.当0
12.已知函数f(x)=-x2-3x,x<0f(x-3),x≥0,以下结论正确的是( )
A.f(x)在区间[4,6]上先增后减
B.f-2+f2020=4
C.若方程fx-b=0在(-∞,6)上有6个不等实根xi(i=1,2,3,4,5,6),则x1+x2+x3+x4+x5+x6=6
D.若方程fx=kx+1恰有3个实根,则k∈(-1,-13)∪{1}
三、填空题(本大题共4小题,每小题5分,共20分.)
13.已知集合A={0,m,m2-3m+2},且2∈A,则实数m的值为.
14.已知fx是定义在R上的奇函数,且当x<0时,fx=ⅇ-x+2x-1,当x≥0时,f(x)=.
15.已知-1≤a+b≤1,-1≤a-b≤1,则2a+3b的取值范围为.
16.已知点(2,9)在函数fx=ax(a>0且a≠1)图象上,对于函数y=fx定义域中的任意x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=fx1•f(x2);②fx1•x2=fx1+f(x2);
③f(x1)-f(x2)x1-x2<0;④fx1+x22
四、解答题(本大题共6小题,17题10分,其余各题12分,共70分.)
17.计算:(1)(31.5×612)2+810.75-(-14)-2-5×0.1250;
(2)lg25+lg2•lg50+lg22-ⅇ3ln2.
18.已知集合A={x|2m-1≤x≤m+2},集合B={x|-1
(2)若A∩B=∅,求实数m的取值范围.
19.已知幂函数f(x)=(3m2-2m)xm-12在(0,+∞)上单调递增,gx=-3x+t.
(1)求实数m的值;
(2)当x∈[1,4]时,记f(x)、gx的值域分别为集合A、B,设命题p:x∈A,命题q:x∈B,若命题q是命题p的必要不充分条件,求实数t的取值范围.
20.定义在R上的函数f(x),满足对任意的x,y∈R,都有fx+y=fx+f(y).当x>0时,fx<0,且f3=-4.
(1)求f0的值;
(2)判断并证明函数fx在R上的奇偶性;
(3)解不等式ft-1+ft<-8.
21.我国某企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x(千部)手机,需另投入可变成本R(x)万元,且R(x)=10x2+200x+1000,0
(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?
22.已知定义域为R的函数fx=b-2x2x+a是奇函数.
(1)求a,b的值;
(2)用定义证明fx在(-∞,+∞)上为减函数;
(3)若对于任意t∈R,不等式ft2-2t+f2t2-k<0恒成立,求k的范围.
2023--2024学年上期期中试卷答案(高一)
一、单选题(共8小题)
1-4 BCCA 5-8 AABD
二、多选题(共4小题)
9.ABC 10.ABC 11.AC 12.ABD
三、填空题(共4小题)
13.3 14. ﹣ex+2x+1 15. [-3,3] 16.①④
四.解答题(共6小题)
17.解:(1)原式=(31.5)2×(312)+(34)0.75-42-5=32.25×312+33-16-5
=327+27-21=3+27﹣21=9.··········································(5分)
(2)原式=lg52+lg2•lg50+(lg2)2﹣eln8=2lg5+lg2(1+lg5)+(lg2)2﹣8
=2lg5+lg2+lg2•lg5+(lg2)2﹣8=2lg5+lg2+lg2(lg5+lg2)﹣8
=2(lg5+lg2)﹣8=﹣6.················································(10分)
18.解:(1)当m=﹣1时,A={x|﹣3≤x≤1},集合B={x|﹣1<x≤2},
所以∁UB={x|x>2或x≤﹣1},···········································(2分)
所以①A∪B={x|﹣3≤x≤2};············································(4分)
②A∩(∁UB)={x|﹣3≤x≤﹣1};········································(6分)
(2)若A∩B=∅,
当A=∅时,2m﹣1>m+2,即m>3,······································(8分)
当A≠∅时,2m-1≤m+2m+2≤-1或2m-1>2
解得m≤﹣3或32<m≤3,·············································(10分)
综上,m的范围为{m|m≤﹣3或m>32}.··································(12分)
19.解:(1)∵f(x)=(3m2-2m)xm-12为幂函数,则3m2﹣2m=1,
解得m=1或m=-13,·················································(2分)
又∵幂函数在(0,+∞)上单调递增,
∴m-12>0,得m=1.··················································(4分)
(2)由第一问得f(x)=x12,在[1,4]上递增,
所以f(x)的值域为[1,2],即集合A={x|1≤x≤2},·······················(6分)
而g(x)=﹣3x+t在[1,4]上递减,所以g(x)的值域为[t﹣81,t﹣3],
即B={x|t﹣81≤x≤t﹣3},··············································(8分)
由命题q是命题p的必要不充分条件可得A⫋B,···························(10分)
所以t-3≥2t-81≤1,解得5≤t≤82,
即t的取值范围为[5,82].··············································(12分)
20.解:(1)由f(x+y)=f(x)+f(y),
令x=y=0得f(0)=f(0)+f(0),
∴f(0)=0.·························································(2分)
(2)f(x)是奇函数,
证明:f(x)定义为R,关于原点对称·································(3分)
由f(x+y)=f(x)+f(y),
令y=﹣x,得f(x﹣x)=f(x)+f(﹣x),
即f(x)+f(﹣x)=f(0)=0,
f(﹣x)=﹣f(x),所以f(x)是奇函数.······························(6分)
(3)任取x1,x2∈R,x1<x2,x2﹣x1>0,·······························(7分)
由f(x+y)=f(x)+f(y)知f(x+y)﹣f(x)=f(y)
f(x1)﹣f(x2)=f(x1﹣x2)=﹣f(x2﹣x1),···························(8分)
由于x2﹣x1>0,所以f(x2﹣x1)<0,
所以f(x1)﹣f(x2)=﹣f(x2﹣x1)>0,即f(x1)>f(x2),
所以f(x)是减函数,·················································(9分)
f(6)=f(3+3)=f(3)+f(3)=﹣8,································(10分)
所以不等式f(t﹣1)+f(t)<﹣8即f(t﹣1+t)<f(6),
所以2t﹣1>6,t>72,
所以不等式f(t﹣1)+f(t)<﹣8的解集为(72,+∞).····················(12分)
21.解:(1)由题意得W(x)=800x﹣R(x)﹣250,
∵R(x)=10x2+200x+1000,0<x<40701x+10000x-8450,x≥40,
∴当0<x<40时,R(x)=10x2+200x+1000,
则W(x)=800x﹣(10x2+200x+1000)﹣250=﹣10x2+600x﹣1250,·········(2分)
当x≥40时,R(x)=701x+10000x-8450,
则W(x)=800x﹣(801x+10000x-8450)﹣250=﹣x-10000x+8200,·········(4分)
综上所述,W(x)=-10x2+600x-1250,0<x<40-x-10000x+8200,x≥40;···················(6分)
(2)由(1)得W(x)=-10x2+600x-1250,0<x<40-x-10000x+8200,x≥40,
则当0<x<40时,W(x)=﹣10x2+600x﹣1250=﹣10(x﹣30)2+7750,
二次函数W(x)的图象开口向下,且对称轴为直线x=30,
∴W(x)max=W(30)=7750,·········································(8分)
当x≥40时,W(x)=﹣x-10000x+8200,
又x+10000x≥2x⋅10000x=200,当且仅当x=10000x,即x=100时等号成立,
∴W(x)=﹣x-10000x+8200≤﹣200+8200=8000,·······················(10分)
∵8000>7750,
∴2023年产量为100(千部)时,企业所获利润最大,最大利润是8000万元.··(12分)
22.解:(1)∵f(x)为R上的奇函数,
∴f(0)=0,可得b=1················································(1分)
又∵f(﹣1)=﹣f(1)
∴1-2-12-1+a=-1-22+a,解之得a=1··········································(2分)
经检验当a=1且b=1时,f(x)=1-2x2x+1,
满足f(﹣x)=﹣f(x)是奇函数.·······································(3分)
故a=1,b=1·························································(4分)
(2)由(1)得f(x)=1-2x2x+1=-1+22x+1,
任取实数x1、x2,且x1<x2················································(5分)
则f(x1)﹣f(x2)=22x1+1-22x2+1=2(2x2-2x1)(2x1+1)(2x2+1)······················(6分)
∵x1<x2,可得2x1<2x2,且(2x1+1)(2x2+1)>0
∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),······························(7分)
∴函数f(x)在(﹣∞,+∞)上为减函数;·······························(8分)
(3)根据(1)(2)知,函数f(x)是奇函数且在(﹣∞,+∞)上为减函数.
∴不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,即f(t2﹣2t)<﹣f(2t2﹣k)=f(﹣2t2+k)
即t2﹣2t>﹣2t2+k对任意的t∈R都成立.
即k<3t2﹣2t对任意的t∈R都成立,·····································(10分)
∵3t2﹣2t=3(t-13)2-13,当t=13时有最小值为-13························(11分)
∴k<-13,即k的范围是(﹣∞,-13).··································(12分)
浙江省绍兴市柯桥区2023_2024学年高一数学上学期期中试题含解析: 这是一份浙江省绍兴市柯桥区2023_2024学年高一数学上学期期中试题含解析,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省焦作市博爱2023_2024高三数学上学期期中试题: 这是一份河南省焦作市博爱2023_2024高三数学上学期期中试题,共18页。
河南省名校联盟2023-2024学年高一上学期期末数学试题: 这是一份河南省名校联盟2023-2024学年高一上学期期末数学试题,文件包含2023-2024高一上联盟期末数学试题pdf、数学dapdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。