- 2024年新高考数学一轮复习知识梳理与题型归纳第18讲导数的应用__利用导数研究不等式恒成立能成立问题(学生版) 试卷 0 次下载
- 2024年新高考数学一轮复习知识梳理与题型归纳第18讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版) 试卷 0 次下载
- 2024年新高考数学一轮复习知识梳理与题型归纳第19讲导数的应用__利用导数研究函数零点问题(教师版) 试卷 0 次下载
- 2024年新高考数学一轮复习知识梳理与题型归纳第20讲任意角和蝗制及任意角的三角函数(学生版) 试卷 0 次下载
- 2024年新高考数学一轮复习知识梳理与题型归纳第20讲任意角和蝗制及任意角的三角函数(教师版) 试卷 0 次下载
2024年新高考数学一轮复习知识梳理与题型归纳第19讲导数的应用__利用导数研究函数零点问题(学生版)
展开知识梳理
1.判断、证明或讨论函数零点个数的方法:利用零点存在性定理的条件为函数图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0.①直接法:判断一个零点时,若函数为单调函数,则只需取值证明f(a)·f(b)<0;②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明f(a)·f(b)<0.
2.已知函数有零点求参数范围常用的方法:(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.
题型归纳
题型1 讨论函数的零点个数
【例1-1】已知函数.
(1)当时,证明:;
(2)当时,讨论函数的零点个数.
【跟踪训练1-1】函数的零点个数为 .
【跟踪训练1-2】已知函数、为实数,为自然对数的底数,.
(1)求函数的单调区间;
(2)当,时,判断函数零点的个数并证明.
【名师指导】
根据参数确定函数的零点个数有两种解决方法:一种是利用单调性与零点存在性定理求解,另一种是化原函数为两个函数,利用两个函数图象的交点来求解
题型2 由函数零点的个数求参数范围
【例2-1】已知函数.
(1)当时,讨论的单调性;
(2)若有两个零点,求的取值范围.
【跟踪训练2-1】已知函数,若函数有唯一零点,则的取值范围为
A.B.,,
C.,,D.,
【跟踪训练2-2】已知函数.
(1)讨论的单调性;
(2)若有三个零点,求的取值范围.
【名师指导】
利用函数零点求参数范围的方法
(1)分离参数(a=g(x))后,将原问题转化为y=g(x)的值域(最值)问题或转化为直线y=a与y=g(x)的图象的交点个数问题(优选分离、次选分类)求解;
(2)利用零点的存在性定理构建不等式求解;
(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解
题型3 函数的零点与极值点的偏移问题
【例3-1】已知函数是自然对数的底数)有两个零点.
(1)求实数的取值范围;
(2)若的两个零点分别为,证明:.
【跟踪训练3-1】已知函数.
(1)求函数的最大值;
(2)若函数存在两个零点,,证明:.
【名师指导】
函数极值点偏移问题的解题策略
函数的极值点偏移问题,其实质是导数的应用问题,解题的策略是把含双变量的等式或不等式转化为仅含一个变量的等式或不等式进行求解,解题时要抓住三个关键量:极值点、根差、根商
2024年新高考数学一轮复习题型归纳与达标检测第19讲导数的应用——利用导数研究函数零点问题(讲)(Word版附解析): 这是一份2024年新高考数学一轮复习题型归纳与达标检测第19讲导数的应用——利用导数研究函数零点问题(讲)(Word版附解析),共6页。
2024年新高考数学一轮复习题型归纳与达标检测第19讲导数的应用——利用导数研究函数零点问题(达标检测)(Word版附解析): 这是一份2024年新高考数学一轮复习题型归纳与达标检测第19讲导数的应用——利用导数研究函数零点问题(达标检测)(Word版附解析),共6页。
高中数学高考第19讲 导数的应用——利用导数研究函数零点问题(达标检测)(学生版): 这是一份高中数学高考第19讲 导数的应用——利用导数研究函数零点问题(达标检测)(学生版),共8页。