所属成套资源:2024年新高考数学一轮复习知识梳理与题型归纳全套
2024年新高考数学一轮复习知识梳理与题型归纳第9讲指数与指数函数(学生版)
展开
这是一份2024年新高考数学一轮复习知识梳理与题型归纳第9讲指数与指数函数(学生版),共5页。试卷主要包含了指数与指数运算),))等内容,欢迎下载使用。
知识梳理
eq \a\vs4\al(1.指数与指数运算)
(1)根式的性质
①(eq \r(n,a))n=a(a使eq \r(n,a)有意义).
②当n是奇数时,eq \r(n,an)=a;
当n是偶数时,eq \r(n,an)=|a|=eq \b\lc\{(\a\vs4\al\c1(a,a≥0,,-a,a0,m,n∈N*,且n>1).
②a-eq \f(m,n)=eq \f(1,a\s\up6(\f(m,n)))=eq \f(1,\r(n,am))(a>0,m,n∈N*,且n>1).
③0的正分数指数幂等于0,0的负分数指数幂没有意义.
(3)有理数指数幂的运算性质
①ar·as=ar+s(a>0,r,s∈Q);
②eq \f(ar,as)=ar-s(a>0,r,s∈Q);
③(ar)s=ars(a>0,r,s∈Q);
④(ab)r=arbr(a>0,b>0,r∈Q).
2.指数函数的概念
函数y=ax(a>0,且a≠1)叫做指数函数,其中指数x是自变量,函数的定义域是R,a是底数.
3.指数函数y=ax(a>0,且a≠1)的图象与性质
核心素养分析
幂函数、指数函数与对数函数是最基本的、应用最广泛的函数,是进一步研究数学的基础。本讲的学习,可以帮助学生学会用函数图象和代数运算的方法研究这些函数的性质;理解这些函数中所蕴含的运算规律;运用这些函数建立模型,解决简单的实际问题,体会这些函数在解决实际问题中的作用。
题型归纳
题型1指数幂的化简与求值
【例1-1】化简,得
A.B.C.D.
【例1-2】 .
【跟踪训练1-1】化简4aeq \s\up6(\f(2,3))·b-eq \f(1,3)÷eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2,3)a-\f(1,3)b\s\up6(\f(2,3))))的结果为( )
A.-eq \f(2a,3b) B.-eq \f(8a,b)
C.-eq \f(6a,b)D.-6ab
【跟踪训练1-2】计算:eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(27,8)))eq \s\up12(-\f(2,3))+0.002-eq \f(1,2)-10(eq \r(5)-2)-1+π0=________.
【名师指导】
指数幂运算的一般原则
(1)有括号的先算括号里的,无括号的先算指数运算.
(2)先乘除后加减,负指数幂化成正指数幂的倒数.
(3)底数是小数,先化成分数;底数是带分数的,先化成假分数.
(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.
题型2指数函数的图象及应用
【例2-1】(1)函数f(x)=21-x的大致图象为( )
(2)若函数y=|3x-1|在(-∞,k]上单调递减,则k的取值范围为________.
【跟踪训练2-1】函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是( )
A.a>1,b1,b>0
C.0
相关试卷
这是一份2024年新高考数学一轮复习知识梳理与题型归纳第14讲导数的概念及运算(学生版),共5页。试卷主要包含了导数的概念,基本初等函数的导数公式,复合函数的导数等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习知识梳理与题型归纳第11讲函数的图象(学生版),共7页。试卷主要包含了利用描点法作函数的图象,利用图象变换法作函数的图象等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习知识梳理与题型归纳第33讲数列的概念与简单表示(学生版),共4页。试卷主要包含了数列的概念,数列的分类,数列的两种常用的表示方法等内容,欢迎下载使用。