所属成套资源:【讲通练透】中考数学一轮(全国通用)
初中数学一轮复习【讲通练透】专题20 多边形内角和定理的应用(练透) (全国通用)
展开
这是一份初中数学一轮复习【讲通练透】专题20 多边形内角和定理的应用(练透) (全国通用),文件包含专题20多边形内角和定理的应用练透-讲通练透2022初中数学一轮全国通用教师版docx、专题20多边形内角和定理的应用练透-讲通练透2022初中数学一轮全国通用学生版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法
2、学会运用数形结合思想。
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
3、要学会抢得分点。
一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
4、学会运用等价转换思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
5、学会运用分类讨论的思想。
如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
6、转化思想:
体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
专题20 多边形内角和定理的应用
一、单选题
1.(2021·四川资阳市·中考真题)下列命题正确的是( )
A.每个内角都相等的多边形是正多边形
B.对角线互相平分的四边形是平行四边形
C.过线段中点的直线是线段的垂直平分线
D.三角形的中位线将三角形的面积分成1∶2两部分
2.(2021·四川眉山·)正八边形中,每个内角与每个外角的度数之比为( )
A.1:3B.1:2C.2:1D.3:1
3.(2021·湖南岳阳·中考真题)下列命题是真命题的是( )
A.五边形的内角和是B.三角形的任意两边之和大于第三边
C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点
4.(2021·辽宁)若正多边形的一个内角是,则这个正多边形的边数为( )
A.12B.10C.8D.7
5.(2021·浙江)正六边形的每个内角的度数是( )
A.B.C.D.以上都不正确
6.(2021·山东济宁·中考真题)如图,正五边形中,的度数为( )
A.B.C.D.
7.(2021·台湾)如图,四边形ABCD中,、、分别为、、的外角判断下列大小关系何者正确?( )
A.B.
C.D.
8.(2021·石家庄市第四十中学九年级)如图,五边形ABCDE中,,,、、分别是、、的外角,则等于( )
A.B.C.D.
9.(2021·厦门市第九中学九年级)一个n边形的内角和为,则n等于( )
A.2B.3C.4D.5
10.(2021·湖南新田县·九年级期中)已知一个多边形的内角和比外角和的3倍还多180°,则这个多边形是( )
A.七边形B.八边形C.九边形D.十边形
二、填空题
11.(2021·四川雅安·中考真题)如图,为正六边形,为正方形,连接CG,则∠BCG+∠BGC=______.
12.(2021·福建省同安第一中学九年级)一个多边形的每一个内角都是,那么这个多边形是_____边形.
13.(2021·浙江温州·九年级期中)如果一个正n边形的每个内角是140°,则n=________.
14.(2021·山东济南·中考真题)如图,正方形的边在正五边形的边上,则__________.
15.(2021·福建厦门双十中学思明分校)已知正n边形的一个内角为,则n的值是_____________.
三、解答题
16.(2021·广东)若一个多边形的内角和的比一个四边形的内角和多90°,那么这个多边形的边数是多少?
17.(2017·揭西县第三华侨中学九年级月考)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到E,使DE=AB.
(1)求证:∠ABC=∠EDC;
(2)求证:△ABC≌△EDC.
18.(2018·浙江九年级月考)若n边形的内角和等于它外角和的3倍,求边数n.
19.(2019·河北邢台三中九年级月考)如图,以正六边形ABCDEF的边AB为边,在形内作正方形ABMN,连接MC.求∠BCM的大小.
20.(2020·福建九年级月考)如图,已知点是正六边形的对称中心,分别是边上的点,且求证:.
21.(2021·全国九年级专题练习)探索归纳:
(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于______;
(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=______;
(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是______;
(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.
22.(2020·浙江嘉兴市·九年级学业考试)定义:每个内角都相等的八边形叫做等角八边形.容易知道,等角八边形的内角都等于135°.下面,我们来研究它的一些性质与判定:
(1)如图1,等角八边形ABCDEFGH中,连结BF.
①请直接写出∠ABF+∠GFB的度数.
②求证:AB∥EF.
③我们把AB与EF称为八边形的一组正对边.由②同理可得:BC与FG,CD与GH,DE与HA这三组正对边也分别平行.请模仿平行四边形性质的学习经验,用一句话概括等角八边形的这一性质.
(2)如图2,等角八边形ABCDEFGH中,如果有AB=EF,BC=FG,则其余两组正对边CD与GH,DE与HA分别相等吗?证明你的结论.
(3)如图3,八边形ABCDEFGH中,若四组正对边分别平行,则显然有∠A=∠E,∠B=∠F,∠C=∠G,∠D=∠H.请探究:该八边形至少需要已知几个内角为135°,才能保证它一定是等角八边形?
23.(2021·全国)(1)如图①,求∠A+∠B+∠C+∠D+∠E+∠F的度数;
(2)如图②,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数;
(3)如图③,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.
相关试卷
这是一份初中数学一轮复习【讲通练透】专题21 三角形中位线定理的应用(练透) (全国通用),文件包含专题21三角形中位线定理的应用练透-讲通练透2022初中数学一轮全国通用教师版docx、专题21三角形中位线定理的应用练透-讲通练透2022初中数学一轮全国通用学生版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份初中数学一轮复习【讲通练透】专题20 多边形内角和定理的应用(讲通) (全国通用),文件包含专题20多边形内角和定理的应用讲通-讲通练透2022初中数学一轮全国通用教师版docx、专题20多边形内角和定理的应用讲通-讲通练透2022初中数学一轮全国通用学生版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份专题12 韦达定理及其应用(练透)-【讲通练透】中考数学一轮(全国通用)(教师版),共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。