第三章 函数(测试)-2024年中考数学一轮复习测试(全国通用)
展开2、学会运用数形结合思想。数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
3、要学会抢得分点。一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
4、学会运用等价转换思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
5、学会运用分类讨论的思想。如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
6、转化思想:体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
第三章 函数
(考试时间:100分钟 试卷满分:120分)
一.选择题(共10小题,满分30分,每小题3分)
1.如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是( )
A.(5,4)B.(3,4)C.(5,3)D.(4,3)
【新考法】 从图象中获取信息
2.甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )
A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米
C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少
3.在函数y=x+3x中,自变量x的取值范围是( )
A.x≥3B.x≥﹣3C.x≥3且x≠0D.x≥﹣3且x≠0
4.如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿E−O−F运动,同时点Q从点B出发沿BC运动,两点运动速度均为1cm/s,当点P运动到点F时,两点同时停止运动,设运动时间为ts,连接BP,PQ,△BPQ的面积为Scm2,下列图像能正确反映出S与t的函数关系的是( )
A.B.C.D.
5.【创新题】直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是( ).
A.0个B.1个C.2个D.1个或2个
6.在同一平面直角坐标系中,一次函数y=ax+b与y=mx+n(a
②方程组{y−ax=by−mx=n的解为{x=−3y=2;
③方程mx+n=0的解为x=2;
④当x=0时,ax+b=−1.
其中结论正确的个数是( )
A.1B.2C.3D.4
【新考法】 反比例函数与几何综合
7.如图,正方形ABCD的边长为5,点A的坐标为(4,0),点B在y轴上,若反比例函数y=kx(k≠0)的图像过点C,则k的值为( )
A.4B.﹣4C.﹣3D.3
8.【创新题】如图,点A在反比例函数y=2xx>0的图像上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是( )
A.1B.2C.22D.4
9.二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是( )
A.B.
C.D.
10.已知抛物线y=ax2+bx+c(a,b,c是常数,0①2a+b<0;
②当x>1时,y随x的增大而增大;
③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.
其中,正确结论的个数是( )
A.0B.1C.2D.3
二.填空题(共6小题,满分18分,每小题3分)
11.如图,点A的坐标为1,3,点B在x轴上,把ΔOAB沿x轴向右平移到ΔECD,若四边形ABDC的面积为9,则点C的坐标为 .
12.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为 元(利润=总销售额-总成本).
13.【原创题】把二次函数y=x2+4x+m的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件: .
14.若点A(1,y1),B(−2,y2),C(−3,y3)都在反比例函数y=6x的图象上,则y1,y2,y3的大小关系为 .
15.已知一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组{3x−y=1kx−y=0的解是 .
【新考法】 二次函数与几何综合
16.在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x−2)20≤x≤3的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c0≤x≤3图象的关联矩形恰好也是矩形OABC,则b= .
三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)
17.某燃气公司计划在地下修建一个容积为V(V为定值,单位:m3)的圆柱形天然气储存室,储存室的底面积S(单位:m2) 与其深度d(单位:m)是反比例函数关系,它的图象如图所示.
(1)求储存室的容积V的值;
(2)受地形条件限制,储存室的深度d需要满足16≤d≤25,求储存室的底面积S的取值范围.
18.如图,一次函数y=kx+2(k≠0)的图像与反比例函数y=mx(m≠0,x>0)的图像交于点A(2,n),与y轴交于点B,与x轴交于点C(−4,0).
(1)求k与m的值;
(2)P(a,0)为x轴上的一动点,当△APB的面积为72时,求a的值.
19.已知一次函数y=kx+bk≠0的图象与反比例函数y=4x的图象相交于点A1,m,Bn,−2.
(1)求一次函数的表达式,并在图中画出这个一次函数的图象;
(2)根据函数图象,直接写出不等式kx+b>4x的解集;
(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC的面积.
20.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:
(1)直接写出y与x的函数关系式;
(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?
(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?
21.如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.
(1)求出抛物线的解析式.
(2)在距离地面134米高处,隧道的宽度是多少?
(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.
22.【创新题】已知函数y=−x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
(1)求b,c的值.
(2)当﹣4≤x≤0时,求y的最大值.
(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.
23.如图,点A(a,2)在反比例函数y=4x的图象上,AB//x轴,且交y轴于点C,交反比例函数y=kx于点B,已知AC=2BC.
(1)求直线OA的解析式;
(2)求反比例函数y=kx的解析式;
(3)点D为反比例函数y=kx上一动点,连接AD交y轴于点E,当E为AD中点时,求△OAD的面积.
24.已知二次函数y=ax2+bx+c的图象过点−1,0,且对任意实数x,都有4x−12≤ax2+bx+c≤2x2−8x+6.
(1)求该二次函数的解析式;
(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
25.如图(1),二次函数y=−x2+bx+c的图像与x轴交于A、B两点,与y轴交于C点,点B的坐标为3,0,点C的坐标为0,3,直线l经过B、C两点.
(1)求该二次函数的表达式及其图像的顶点坐标;
(2)点P为直线l上的一点,过点P作x轴的垂线与该二次函数的图像相交于点M,再过点M作y轴的垂线与该二次函数的图像相交于另一点N,当PM=12MN时,求点P的横坐标;
(3)如图(2),点C关于x轴的对称点为点D,点P为线段BC上的一个动点,连接AP,点Q为线段AP上一点,且AQ=3PQ,连接DQ,当3AP+4DQ的值最小时,直接写出DQ的长.
销售单价x(元/件)
…
35
40
45
…
每天销售数量y(件)
…
90
80
70
…
第六章 圆(测试)-2024年中考数学一轮复习测试(全国通用): 这是一份第六章 圆(测试)-2024年中考数学一轮复习测试(全国通用),文件包含第六章圆测试原卷版docx、第六章圆测试解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
第03章 函数真题测试(提升版)-备战2024年中考数学一轮复习考点研究(全国通用): 这是一份第03章 函数真题测试(提升版)-备战2024年中考数学一轮复习考点研究(全国通用),文件包含第三章函数真题测试提升版原卷版docx、第三章函数真题测试提升版解析版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
第03章 函数真题测试(基础版)-备战2024年中考数学一轮复习考点研究(全国通用): 这是一份第03章 函数真题测试(基础版)-备战2024年中考数学一轮复习考点研究(全国通用),文件包含第三章函数真题测试基础版原卷版docx、第三章函数真题测试基础版解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。