重难点15 与圆有关的压轴题(9题型)-2024年中考数学一轮复习(全国通用)
展开2、学会运用数形结合思想。数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
3、要学会抢得分点。一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
4、学会运用等价转换思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
5、学会运用分类讨论的思想。如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
6、转化思想:体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
重难点突破15 与圆有关的压轴题
目 录
TOC \ "1-3" \n \h \z \u
\l "_Tc159841974" 题型01 利用圆的相关知识解决多结论问题
\l "_Tc159841975" 题型02 圆与三角形综合问题
\l "_Tc159841976" 题型03 圆与四边形综合问题
\l "_Tc159841977" 题型04 圆与函数综合问题
\l "_Tc159841978" 题型05 正多边形与圆综合
\l "_Tc159841979" 题型06 求不规则图形面积
\l "_Tc159841980" 题型07 三角形内切圆与外切圆综合
\l "_Tc159841981" 题型08 阿氏圆模型
\l "_Tc159841982" 题型09 隐圆模型
题型01 利用圆的相关知识解决多结论问题
一、单选题
1.(2023·四川德阳·统考中考真题)如图,⊙O的直径AB=10,DE是弦,AB⊥DE,CEB=EBD,sin∠BAC=35,AD的延长线与CB的延长线相交于点F,DB的延长线与OE的延长线相交于点G,连接CG.下列结论中正确的个数是( )
①∠DBF=3∠DAB;
②CG是⊙O的切线;
③B,E两点间的距离是10;
④DF=11109.
A.1B.2C.3D.4
2.(2020·四川遂宁·统考中考真题)如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:
①∠AED+∠EAC+∠EDB=90°,
②AP=FP,
③AE=102AO,
④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,
⑤CE•EF=EQ•DE.
其中正确的结论有( )
A.5个B.4个C.3个D.2个
3.(2021·四川广元·统考中考真题)如图,在正方形ABCD中,点O是对角线BD的中点,点P在线段OD上,连接AP并延长交CD于点E,过点P作PF⊥AP交BC于点F,连接AF、EF,AF交BD于G,现有以下结论:①AP=PF;②DE+BF=EF;③PB−PD=2BF;④S△AEF为定值;⑤S四边形PEFG=S△APG.以上结论正确的有 (填入正确的序号即可).
4.(2021·广东广州·统考中考真题)如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列四个结论.(1)H是FK的中点;(2)△HGD≌△HEC;(3)S△AHG:S△DHC=9∶16;(4)DK=75,其中正确的结论有 (填写所有正确结论的序号).
题型02 圆与三角形综合问题
5.(2023·吉林长春·统考中考真题)【感知】如图①,点A、B、P均在⊙O上,∠AOB=90°,则锐角∠APB的大小为__________度.
【探究】小明遇到这样一个问题:如图②,⊙O是等边三角形ABC的外接圆,点P在AC上(点P不与点A、C重合),连结PA、PB、PC.求证:PB=PA+PC.小明发现,延长PA至点E,使AE=PC,连结BE,通过证明△PBC≌△EBA,可推得PBE是等边三角形,进而得证.
下面是小明的部分证明过程:
证明:延长PA至点E,使AE=PC,连结BE,
∵四边形ABCP是⊙O的内接四边形,
∴∠BAP+∠BCP=180°.
∵∠BAP+∠BAE=180°,
∴∠BCP=∠BAE.
∵△ABC是等边三角形.
∴BA=BC,
∴△PBC≌△EBA(SAS)
请你补全余下的证明过程.
【应用】如图③,⊙O是△ABC的外接圆,∠ABC=90°,AB=BC,点P在⊙O上,且点P与点B在AC的两侧,连结PA、PB、PC.若PB=22PA,则PBPC的值为__________.
6.(2023·浙江台州·统考中考真题)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置,如图,AB是⊙O的直径,直线l是⊙O的切线,B为切点.P,Q是圆上两点(不与点A重合,且在直径AB的同侧),分别作射线AP,AQ交直线l于点C,点D.
(1)如图1,当AB=6,BP⏜的长为π时,求BC的长.
(2)如图2,当AQAB=34,BP=PQ时,求BCCD的值.
(3)如图3,当sin∠BAQ=64,BC=CD时,连接BP,PQ,直接写出PQBP的值.
7.(2023·湖南永州·统考中考真题)如图,以AB为直径的⊙O是△ABC的外接圆,延长BC到点D.使得∠BAC=∠BDA,点E在DA的延长线上,点A在线段AC上,CE交BM于N,CE交AB于G.
(1)求证:ED是⊙O的切线;
(2)若AC=6,BD=5,AC>CD,求BC的长;
(3)若DE⋅AM=AC⋅AD,求证:BM⊥CE.
8.(2023·四川广安·统考中考真题)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E是BC的中点,连接OE、DE.
(1)求证:DE是⊙O的切线.
(2)若sinC=45,DE=5,求AD的长.
(3)求证:2DE2=CD⋅OE.
9.(2023·辽宁锦州·统考中考真题)如图,AE为⊙O的直径,点C在⊙O上,AB与⊙O相切于点A,与OC延长线交于点B,过点B作BD⊥OB,交AC的延长线于点D.
(1)求证:AB=BD;
(2)点F为⊙O上一点,连接EF,BF,BF与AE交于点G.若∠E=45°,AB=5,tan∠ABG=37,求⊙O的半径及AD的长.
10.(2023·四川雅安·统考中考真题)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.
(1)求证:DE是⊙O的切线;
(2)若DE=2,tan∠BAC=12,求AD的长;
(3)在(2)的条件下,点P是⊙O上一动点,求PA+PB的最大值.
11.(2022·广东深圳·统考中考真题)一个玻璃球体近似半圆O,AB为直径,半圆O上点C处有个吊灯EF, EF//AB, CO⊥AB,EF的中点为D,OA=4.
(1)如图①,CM为一条拉线,M在OB上,OM=1.6,DF=0.8,求CD的长度.
(2)如图②,一个玻璃镜与圆O相切,H为切点,M为OB上一点,MH为入射光线,NH为反射光线,∠OHM=∠OHN=45°,tan∠COH=34,求ON的长度.
(3)如图③,M是线段OB上的动点,MH为入射光线,∠HOM=50°,HN为反射光线交圆O于点N,在M从O运动到B的过程中,求N点的运动路径长.
题型03 圆与四边形综合问题
12.(2021·江苏镇江·统考中考真题)如图1,正方形ABCD的边长为4,点P在边BC上,⊙O经过A,B,P三点.
(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;
(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.
13.(2021·广东深圳·统考中考真题)如图,AB为⊙O的弦,D,C为ACB的三等分点,AC//BE.
(1)求证:∠A=∠E;
(2)若BC=3,BE=5,求CE的长.
14.(2021·浙江宁波·统考中考真题)如图1,四边形ABCD内接于⊙O,BD为直径,AD上存在点E,满足AE=CD,连接BE并延长交CD的延长线于点F,BE与AD交于点G.
(1)若∠DBC=α,请用含α的代数式表列∠AGB.
(2)如图2,连接CE,CE=BG.求证;EF=DG.
(3)如图3,在(2)的条件下,连接CG,AD=2.
①若tan∠ADB=32,求△FGD的周长.
②求CG的最小值.
15.(2021·四川绵阳·统考中考真题)如图,四边形ABCD是⊙O的内接矩形,过点A的切线与CD的延长线交于点M,连接OM与AD交于点E,AD>1,CD=1.
(1)求证:△DBC∼△AMD;
(2)设AD=x,求△COM的面积(用x的式子表示);
(3)若∠AOE=∠COD,求OE的长.
16.(2020·四川遂宁·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O的切线.
(1)求证:BC是⊙O的切线.
(2)求证:EF=ED.
(3)若sin∠ABC═35,AC=15,求四边形CHQE的面积.
17.(2018·浙江台州·统考中考真题)如图,△ABC是⊙O的内接三角形,点D在BC上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=AB•AC;
(3)已知⊙O的半径为3.
①若ABAC=53,求BC的长;
②当ABAC为何值时,AB•AC的值最大?
题型04 圆与函数综合问题
18.(2020·贵州遵义·统考中考真题)如图,抛物线y=ax2+94x+c经过点A(﹣1,0)和点C (0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
19.(2023·广东广州·统考中考真题)已知点Pm,n在函数y=−2xx<0的图象上.
(1)若m=−2,求n的值;
(2)抛物线y=x−mx−n与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.
①m为何值时,点E到达最高处;
②设△GMN的外接圆圆心为C,⊙C与y轴的另一个交点为F,当m+n≠0时,是否存在四边形FGEC为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.
20.(2023·湖南·统考中考真题)如图,点A,B,C在⊙O上运动,满足AB2=BC2+AC2,延长AC至点D,使得∠DBC=∠CAB,点E是弦AC上一动点(不与点A,C重合),过点E作弦AB的垂线,交AB于点F,交BC的延长线于点N,交⊙O于点M(点M在劣弧AC上).
(1)BD是⊙O的切线吗?请作出你的判断并给出证明;
(2)记△BDC,△ABC,△ADB的面积分别为S1,S2,S,若S1⋅S=S22,求tanD2的值;
(3)若⊙O的半径为1,设FM=x,FE⋅FN⋅1BC⋅BN+1AE⋅AC=y,试求y关于x的函数解析式,并写出自变量x的取值范围.
21.(2023·江苏苏州·统考中考真题)如图,二次函数y=x2−6x+8的图像与x轴分别交于点A,B(点A在点B的左侧),直线l是对称轴.点P在函数图像上,其横坐标大于4,连接PA,PB,过点P作PM⊥l,垂足为M,以点M为圆心,作半径为r的圆,PT与⊙M相切,切点为T.
(1)求点A,B的坐标;
(2)若以⊙M的切线长PT为边长的正方形的面积与△PAB的面积相等,且⊙M不经过点3,2,求PM长的取值范围.
22.(2023·浙江温州·统考中考真题)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知OA=32,AC=1.如图2,连接AF,P为线段AF上一点,过点P作BC的平行线分别交CE,BE于点M,N,过点P作PH⊥AB于点H.设PH=x,MN=y.
(1)求CE的长和y关于x的函数表达式.
(2)当PH
23.(2023·湖南怀化·统考中考真题)如图一所示,在平面直角坐标系中,抛物线y=ax2+bx−8与x轴交于A(−4,0)、B(2,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式及顶点坐标;
(2)点P为第三象限内抛物线上一点,作直线AC,连接PA、PC,求△PAC面积的最大值及此时点P的坐标;
(3)设直线l1:y=kx+k−354交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=−374上总存在一点E,使得∠MEN为直角.
24.(2021·广东广州·统考中考真题)如图,在平面直角坐标系xOy中,直线l:y=12x+4分别与x轴,y轴相交于A、B两点,点Px,y为直线l在第二象限的点
(1)求A、B两点的坐标;
(2)设△PAO的面积为S,求S关于x的函数解析式:并写出x的取值范围;
(3)作△PAO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C的半径.
25.(2021·四川眉山·统考中考真题)如图,直线y=34x+6与x轴交于点A,与y轴交于点B.直线MN//AB,且与△AOB的外接圆⊙P相切,与双曲线y=−30x在第二象限内的图象交于C、D两点.
(1)求点A,B的坐标和⊙P的半径;
(2)求直线MN所对应的函数表达式;
(3)求△BCN的面积.
题型05 正多边形与圆综合
26.(2022·浙江金华·统考中考真题)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF;②以F为圆心,FO为半径作圆弧,与⊙O交于点M,N;③连接AM,MN,NA.
(1)求∠ABC的度数.
(2)△AMN是正三角形吗?请说明理由.
(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.
27.(2020·广东广州·统考中考真题)如图,⊙O为等边ΔABC的外接圆,半径为2,点D在劣弧AB⏜上运动(不与点A,B重合),连接DA,DB,DC.
(1)求证:DC是∠ADB的平分线;
(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;
(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,ΔDMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.
28.(2020·内蒙古呼和浩特·中考真题)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现者名的黄金分割比5−12≈0.618.如图,圆内接正五边形ABCDE,圆心为O,OA与BE交于点H,AC、AD与BE分别交于点M、N.根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)
(1)求证:△ABM是等腰三角形且底角等于36°,并直接说出△BAN的形状;
(2)求证:BMBN=BNBE,且其比值k=5−12;
(3)由对称性知AO⊥BE,由(1)(2)可知MNBM也是一个黄金分割数,据此求sin18°的值.
29.(2021·湖南湘潭·统考中考真题)德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”.
如图①,点C把线段AB分成两部分,如果CBAC=5−12≈0.618,那么称点C为线段AB的黄金分割点.
(1)特例感知:在图①中,若AB=100,求AC的长;
(2)知识探究:如图②,作⊙O的内接正五边形:
①作两条相互垂直的直径MN、AI;
②作ON的中点P,以P为圆心,PA为半径画弧交OM于点Q;
③以点A为圆心,AQ为半径,在⊙O上连续截取等弧,使弦AB=BC=CD=DE=AQ,连接AE;
则五边形ABCDE为正五边形.
在该正五边形作法中,点Q是否为线段OM的黄金分割点?请说明理由.
(3)拓展应用:国旗和国徽上的五角星是革命和光明的象征,是一个非常优美的几何图形,与黄金分割有着密切的联系.
延长题(2)中的正五边形ABCDE的每条边,相交可得到五角星,摆正后如图③,点E是线段PD的黄金分割点,请利用题中的条件,求cs72°的值.
30.(2020·内蒙古通辽·中考真题)中心为O的正六边形ABCDEF的半径为6cm.点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为ts.
(1)求证:四边形PBQE为平行四边形;
(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.
31.(2018·四川达州·统考中考真题)阅读下列材料:
已知:如图1,等边△A1A2A3内接于⊙O,点P是A1A2上的任意一点,连接PA1,PA2,PA3,可证:PA1+PA2=PA3,从而得到:PA1+PA2PA1+PA2+PA3=12是定值.
(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;
证明:如图1,作∠PA1M=60°,A1M交A2P的延长线于点M.
∵△A1A2A3是等边三角形,
∴∠A3A1A2=60°,
∴∠A3A1P=∠A2A1M
又A3A1=A2A1,∠A1A3P=∠A1A2P,
∴△A1A3P≌△A1A2M
∴PA3=MA2=PA2+PM=PA2+PA1.
∴PA1+PA2PA1+PA2+PA3=12,是定值.
(2)延伸:如图2,把(1)中条件“等边△A1A2A3”改为“正方形A1A2A3A4”,其余条件不变,请问:PA1+PA2PA1+PA2+PA3+PA4还是定值吗?为什么?
(3)拓展:如图3,把(1)中条件“等边△A1A2A3”改为“正五边形A1A2A3A4A5”,其余条件不变,则PA1+PA2PA1+PA2+PA3+PA4+PA5= (只写出结果).
题型06 求不规则图形面积
32.(2023·山东潍坊·统考中考真题)如图,正方形ABCD内接于⊙O,在AB上取一点E,连接AE,DE.过点A作AG⊥AE,交⊙O于点G,交DE于点F,连接CG,DG.
(1)求证:△AFD≌△CGD;
(2)若AB=2,∠BAE=30°,求阴影部分的面积.
33.(2021·广西桂林·统考中考真题)如图,四边形ABCD中,∠B=∠C=90°,点E为BC中点,AE⊥DE于点E.点O是线段AE上的点,以点O为圆心,OE为半径的⊙O与AB相切于点G,交BC于点F,连接OG.
(1)求证:△ECD∽△ABE;
(2)求证:⊙O与AD相切;
(3)若BC=6,AB=33,求⊙O的半径和阴影部分的面积.
34.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动
【问题情境】
刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:
如图,将一个三角形纸板△ABC绕点A逆时针旋转θ到达△AB'C'的位置,那么可以得到:AB=AB',AC=AC',BC=B'C';∠BAC=∠B'AC',∠ABC=∠AB'C',∠ACB=∠AC'B'( )
刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.
【问题解决】
(1)上述问题情境中“( )”处应填理由:____________________;
(2)如图,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A'B'C'的位置.
①请在图中作出点O;
②如果BB'=6cm,则在旋转过程中,点B经过的路径长为__________;
【问题拓展】
小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.
35.(2020·山东临沂·中考真题)已知⊙O1的半径为r1,⊙O2的半径为r2,以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以12O1O2的长为半径画弧,两弧交于点A,连接Q1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.
(1)求证:BC是⊙O2的切线;
(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.
36.(2019·湖北武汉·统考中考真题)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点
(1)如图1,求证:AB2=4AD⋅BC
(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积
题型07 三角形内切圆与外切圆综合
37.(2019·山西·统考中考真题)阅读以下材料,并按要求完成相应地任务:
莱昂哈德·欧拉(Lenhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则OI2=R2−2Rr.
如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.
下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI,
∴IMIA=IDIN,
∴IA⋅ID=IM⋅IN①,
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,
∵DE是⊙O的直径,∴∠DBE=90°,
∵⊙I与AB相切于点F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB,
∴IADE=IFBD,∴IA⋅BD=DE⋅IF②,
任务:(1)观察发现:IM=R+d,IN= (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由;
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.
38.(2019·湖北荆门·统考中考真题)已知锐角ΔABC的外接圆圆心为O,半径为R.
(1)求证:ACsinB=2R;
(2)若ΔABC中∠A=45°,∠B=60°,AC=3,求BC的长及sinC的值.
39.(2022·陕西西安·二模)【问题提出】(1)如图1,在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,点E为AB延长线上一点,连接EC并延长,交AD的延长线于点F,则∠BCE+∠DCF的度数为______°;
【问题探究】(2)如图2,在Rt△ABC中,∠ABC=90°,点D、E在直线BC上,连接AD、AE,若∠DAE=60°,AB=6,求△ADE面积的最小值;
【问题解决】(3)近日,教育部印发了《义务教育课程方案和课程标准(2022年版)》,此次修订中增加的跨学科主题学习活动,突破学科边界,鼓励教师开展跨学科教研,设计出主题鲜明、问题真实的跨学科学习活动.为此,某校欲将校园内一片三角形空地ABC(如图3所示)进行扩建后作为跨学科主题学习活动中心,在AB的延长线上取一点D,连接DC并延长到点E,连接AE,已知AE∥BC,AB=BC=40米,∠ABC=90°,为节约修建成本,需使修建后△ADE的面积尽可能小,问△ADE的面积是否存在最小值?若存在,求出其最小面积;若不存在,请说明理由.
40.(2021·陕西西安·校考模拟预测)问题提出:若一个三角形的三个顶点分别在一个图形的不同的边上,则称此三角形为该图形的内接三角形.
(1)如图1,⊙O及弦AB,点C为圆上一点,则△ABC称为⊙O的内接三角形.若⊙O的半径等于5,弦AB=8,画出⊙O的面积最大的内接三角形△ABC,且其内接三角形面积的最大值是___________;
问题探究:
(2)如图2,△ABC中,∠A=∠B=30°,AC=4,D是AC的中点,△DEF是△ABC的内接等腰直角三角形,且∠DFE=90°,求△DEF的面积.
问题解决:
(3)高新区的小朋友为给十四运的选手们加油,在现有的一块三角形展板上,绘制一个三角形的图案,如图3,展板△ABC为等腰直角三角形,∠C=90°,AC=BC=4,绘制的图案为△ABC的内按等腰直角三角形,试探究:绘制的图案的面积是否存在最小值?若存在,请求出面积的最小值;若不存在,请说明理由.
题型08 阿氏圆模型
41.(2021·全国·九年级专题练习)如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=2,连接AF,BD
(1)求证:△BDC≌△AFC
(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+22AD的值;
(3)直接写出正方形CDEF旋转过程中,BD+22AD的最小值.
42.(2023上·重庆九龙坡·九年级重庆市育才中学校考期末)已知△CDE与△ABC有公共顶点C,△CDE为等边三角形,在△ABC中,∠BAC=120°.
(1)如图1,当点E与点B重合时,连接AD,已知四边形ABDC的面积为23,求AB+AC的值;
(2)如图2,AB=AC, A、E、D三点共线,连接AE、BE,取BE中点M,连接AM,求证:AD=2AM;
(3)如图3,AB=AC=4,CE=2,将△CDE以C为旋转中心旋转,取DE中点F,当BF+34AF的值最小时,求tan∠ABF的值.
43.(2019·山东·统考中考真题)如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B
(1)求抛物线解析式及B点坐标;
(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;
(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+12PA的值最小,请求出这个最小值,并说明理由.
44.(2021上·江苏宿迁·九年级校考期末)问题提出:如图①,在Rt△ABC中,∠C=90∘,CB=4,CA=6,⊙C的半径为2,P为圆上一动点,连接AP、BP,求AP+12BP的最小值.
(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图①,连接CP,在CB上取一点D,使CD=1,则CDCP=CPCB=12.又∠PCD=∠BCP,所以△PCD∽△BCP.所以PDBP=CDCP=12.
所以PD=12PB,所以AP+12BP=AP+PD.
请你完成余下的思考,并直接写出答案:AP+12BP的最小值为________;
(2)自主探索:在“问题提出”的条件不变的前提下,求13AP+BP的最小值;
(3)拓展延伸:如图②,已知在扇形COD中,∠COD=90∘,OC=6,OA=3,OB=5,P是CD上一点,求2PA+PB的最小值.
45.(2018·广西柳州·中考真题)如图,抛物线y=ax2+bx+c与x轴交于A(3,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=3OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.
(1)求抛物线的解析式;
(2)设点P的横坐标为m,当FH=HP时,求m的值;
(3)当直线PF为抛物线的对称轴时,以点H为圆心,12HC为半径作⊙H,点Q为⊙H上的一个动点,求14AQ+EQ的最小值.
题型09 隐圆模型
46.(2022·重庆万州·重庆市万州国本中学校校考一模)如图,在△ABC和△DEF中,∠BAC=∠EDF=90∘,AB=AC,DE=DF,BC、EF交于点M,且点M为BC、EF的中点,将△DEF绕点M旋转.
(1)如图1,当△DEF旋转至点A在FD延长线上时,若BC=32,AF=655,tan∠BAF=2,求线段BF的长;
(2)如图2,当△DEF旋转至点A在FD延长线上,求证:2AF=2BE+EF;
(3)如图3,在△DEF旋转过程中,直线AD与直线CF交于点N,连接BN,P为BN的中点,连接AP,若AB=62,请直接写出线段AP的最大值.
47.(2022·江苏盐城·统考一模)在平面直角坐标系中,二次函数y=x2+bx+c的图像过点C0,−4和点D2,−6,与x轴交于点A、B(点A在点B的左边),且点D与点G关于坐标原点对称.
(1)求该二次函数解析式,并判断点G是否在此函数的图像上,并说明理由;
(2)若点P为此抛物线上一点,它关于x轴,y轴的对称点分别为M,N,问是否存在这样的P点使得M,N恰好都在直线DG上?如存在,求出点P的坐标,如不存在,并说明理由;
(3)若第四象限有一动点E,满足BE=OB,过E作EF⊥x轴于点F,设F坐标为t,0,0
(1)如图1,连接OB交PQ于点D,则点D的坐标为________;
(2)如图2,过A作AH⊥PQ于点H,求OH的最小值;
(3)如图3,在PQ上取一点M,使得∠AMP=45°,那么点M的纵坐标是否存在最大值,若存在,求出此时OP的长;若不存在,说明理由.
49.(2021上·湖北武汉·九年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)【问题背景】如图1,P是等边△ABC内一点,∠APB=150°,则PA2+PB2=PC2.小刚为了证明这个结论,将△PAB绕点A逆时针旋转60°,请帮助小刚完成辅助线的作图;
【迁移应用】如图2,D是等边△ABC外一点,E为CD上一点,AD∥BE,∠BEC=120°,求证:△DBE是等边三角形;
【拓展创新】如图3,EF=6,点C为EF的中点,边长为3的等边△ABC绕着点C在平面内旋转一周,直线AE、BF交于点P,M为PG的中点,EF⊥FG于F,FG=43,请直接写出MC的最小值.
50.(2021·陕西西安·西安益新中学校考模拟预测)问题发现:
(1)正方形ABCD和正方形AEFG如图①放置,AB=4,AE=2.5,则DGCF=___________.
问题探究:
(2)如图②,在矩形ABCD中,AB=3,BC=4,点P在矩形的内部,∠BPC=135°,求AP长的最小值.
问题拓展:
(3)如图③,在四边形ABCD中,连接对角线AC、BD,已知AB=6,AC=CD,∠ACD=90°,∠ACB=45°,则对角线BD是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
重难点11 四边形压轴综合(17种题型)-2024年中考数学一轮复习讲义(全国通用): 这是一份重难点11 四边形压轴综合(17种题型)-2024年中考数学一轮复习讲义(全国通用),文件包含重难点11四边形压轴综合17种题型原卷版docx、重难点11四边形压轴综合17种题型解析版docx等2份试卷配套教学资源,其中试卷共245页, 欢迎下载使用。
压轴题17与圆有关的阴影部分面积的计算-2023年中考数学压轴题专项训练(全国通用): 这是一份压轴题17与圆有关的阴影部分面积的计算-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题17与圆有关的阴影部分面积的计算-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题17与圆有关的阴影部分面积的计算-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
压轴题15圆的切线的有关计算与证明问题-2023年中考数学压轴题专项训练(全国通用): 这是一份压轴题15圆的切线的有关计算与证明问题-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题15切线的有关计算与证明问题-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题15切线的有关计算与证明问题-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。