所属成套资源:高中数学竞赛真题•强基计划真题考前适应性训练
- 【高中数学竞赛真题•强基计划真题考前适应性训练】 专题03三角函数 真题专项训练(全国竞赛+强基计划专用)原卷版 试卷 3 次下载
- 【高中数学竞赛真题•强基计划真题考前适应性训练】 专题04 向量 真题专项训练(全国竞赛+强基计划专用)解析版 试卷 3 次下载
- 【高中数学竞赛真题•强基计划真题考前适应性训练】 专题05 数列 真题专项训练(全国竞赛+强基计划专用)解析版 试卷 4 次下载
- 【高中数学竞赛真题•强基计划真题考前适应性训练】 专题05 数列 真题专项训练(全国竞赛+强基计划专用)原卷版 试卷 4 次下载
- 【高中数学竞赛真题•强基计划真题考前适应性训练】 专题07 解析几何 真题专项训练(全国竞赛+强基计划专用)解析版 试卷 4 次下载
【高中数学竞赛真题•强基计划真题考前适应性训练】 专题04 向量 真题专项训练(全国竞赛+强基计划专用)原卷版
展开
这是一份【高中数学竞赛真题•强基计划真题考前适应性训练】 专题04 向量 真题专项训练(全国竞赛+强基计划专用)原卷版,共5页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.(2020·北京·高三校考强基计划)在中,.点P满足,则( )
A.B.
C.D.
2.(2022·全国·高三专题练习)已知点是边长为1的正方形所在平面上一点,满足,则的最小值是( )
A.B.C.D.
3.(2020·浙江温州·高一统考竞赛)已知单位向量,的夹角为60°,向量,且,,设向量与的夹角为,则的最大值为( ).
A.B.C.D.
二、多选题
4.(2020·北京·高三校考强基计划)设平面向量满足,且,则的( )
A.最大值为B.最大值为
C.最小值为0D.最小值为
三、填空题
5.(2021·全国·高三竞赛)已知向量,则的最大值是___________.
6.(2021·全国·高三竞赛)已知两个非零向量满足,则的最大值是_____.
7.(2021·全国·高三竞赛)中,A、B、C的对边分别为a、b、c,O是的外心,点P满足,若,且,则的面积为_________.
8.(2021·全国·高三竞赛)已知平面单位向量,且,记,则y的最大值为________.
9.(2021·全国·高三竞赛)已知点A满足,B、C是单位圆O上的任意两点,则的取值范围是__________.
10.(2020·浙江·高三竞赛)已知,为非零向量,且,则的最大值为__________.
11.(2022春·浙江·高一校联考竞赛)设平面向量,,满足,,,.若,则____________.
12.(2018·河北·高二竞赛)在矩形ABCD中,已知AB=3,BC=1,动点P在边CD上.设,,则的最大值为________.
13.(2019·河南·高二校联考竞赛)在平面上,,,,若,则的取值范围是________.
14.(2022·浙江·高二竞赛)已知平面向量,,满足,且,则最大值为______.
15.(2022·福建·高二统考竞赛)如图,点M、N分别在△ABC的边AB、AC上,且,,D为线段BC的中点,G为线段MN与AD的交点.若,则的最小值为___________.
16.(2022·贵州·高二统考竞赛)甲烷分子的四个氢原子位于棱长为1的正四面体的四个顶点,碳原子C位于四面体的中心,记四个氢原子分别为,,,,则_____.
17.(2018·山东·高三竞赛)在中,,的平分线交于,且有.若,则______.
18.(2019·重庆·高三校联考竞赛)已知向量满足,且,若为的夹角,则_______ .
19.(2019·广西·高三校联考竞赛)已知点P(-2,5)在圆上,直线l:与圆C相交于A、B两点,则____________ .
20.(2020春·浙江·高三校联考阶段练习)已知点为所在平面内任意一点,满足,若,,则的取值范围是______.
21.(2021·全国·高三竞赛)如图,在中,是边上一点,且.若点满足与共线,,则的值为_________.
22.(2021·全国·高三竞赛)设P是所在平面内一点,满足,若的面积为1,则的面积为__________.
23.(2021·全国·高三竞赛)已知为三内角,向量.如果当最大时,存在动点,使得成等差数列,则最大值为________.
24.(2022·江苏南京·高三强基计划)已知向量,,满足,,,且,则最小值为___________.
25.(2021·全国·高三竞赛)已知平面向量、、,满足,若,那么的最小值为___________.
26.(2019·福建·高三校联考竞赛)已知为△ABC的内心,且.记R、r分别为△ABC的外接圆、内切圆半径,若,则R=____________ .
27.(2019·贵州·高三校联考竞赛)在△ABC中,.则____________ .
28.(2021·全国·高三竞赛)已知三个非零向量、、,满足(其中为给定的正常数).则实数t的最小值为___________.
四、解答题
29.(2020·浙江温州·高一统考竞赛)若平面上的点满足.
(1)求的最大值;
(2)设向量,,定义运算.若,求的取值范围.(其中О为坐标原点)
30.(2018·河北·高二竞赛)已知O是的外心,且,求的值.
相关试卷
这是一份【高中数学竞赛真题•强基计划真题考前适应性训练】 专题01 集合 真题专项训练(全国竞赛+强基计划专用)原卷版,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份【高中数学竞赛真题•强基计划真题考前适应性训练】 专题01 集合 真题专项训练(全国竞赛+强基计划专用)解析版,共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份【高中数学竞赛真题•强基计划真题考前适应性训练】 专题06 不等式 真题专项训练(全国竞赛+强基计划专用)原卷及解析版,文件包含高中数学竞赛真题•强基计划真题考前适应性训练专题06不等式真题专项训练全国竞赛+强基计划专用原卷版docx、高中数学竞赛真题•强基计划真题考前适应性训练专题06不等式真题专项训练全国竞赛+强基计划专用解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。