中职数学高教版(2021)拓展模块一 上册第5章 复数精品导学案
展开
这是一份中职数学高教版(2021)拓展模块一 上册第5章 复数精品导学案,文件包含第5章复数知识考点-中职专用高中数学单元复习讲与测高教版2021·拓展模块一上册原卷版docx、第5章复数知识考点-中职专用高中数学单元复习讲与测高教版2021·拓展模块一上册解析版docx等2份学案配套教学资源,其中学案共18页, 欢迎下载使用。
知识点一:复数的概念和意义
1.复数的有关概念
(1)定义:形如a+bi(a,b∈R)的数叫做复数,其中i叫做虚数单位,实部是eq \a\vs4\al(a),虚部是eq \a\vs4\al(b).
(2)虚数单位:把平方等于-1的数用符号i表示,规定i2=-1,我们把i叫作虚数单位.
(3)表示方法:复数通常用字母z表示,代数形式为z=a+bi(a,b∈R).
(4)复数集:①定义:全体复数所成的集合.②表示:通常用大写字母C表示.
注意:复数概念说明:
(1)复数集是最大的数集,任何一个数都可以写成a+bi(a,b∈R)的形式,其中0=0+0i.
(2)复数的实部是a,虚部是实数b而非bi.
(3)复数z=a+bi只有在a,b∈R时才是复数的代数形式,否则不是代数形式.
2.复数的分类
对于复数a+bi,
(1)当且仅当b=0时,它是实数;
(2)当且仅当a=b=0时,它是实数0;
(3)当b≠0时,叫做虚数;
(4)当a=0且b≠0时,叫做纯虚数.
这样,复数z=a+bi可以分类如下:复数=实数b=0 虚数(b≠0)(当a=0时为纯虚数).
注意:复数集、实数集、虚数集、纯虚数集之间的关系
3.复数相等
在复数集C=eq \b\lc\{\rc\}(\a\vs4\al\c1(a+bi|a,b∈R))中任取两个数a+bi,c+di(a,b,c,d∈R),
我们规定:两个复数相等的充要条件是实部与虚部分别相等。
4.复数的几何意义
(1)复平面 建立了直角坐标系来表示复数的平面叫做复平面
①轴——实轴 ②轴——虚轴 ③实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数
(2)复数的几何意义——与点对应
复数的几何意义1:复数复平面内的点
(3)复数的几何意义——与向量对应
复数的几何意义2:复数 平面向量
(4)复数的模
向量的模叫做复数)的模,记为或
公式:,其中
复数模的几何意义:复数在复平面上对应的点到原点的距离;
特别的,时,复数是一个实数,它的模就等于(的绝对值).
(5)共轭复数
①定义
一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数;虚部不等于0的两个共轭复数也叫共轭虚数.
②表示方法
复数的共轭复数用表示,即如果,则.
知识点二:复数的运算
1.复数代数形式的加法运算及其几何意义
(1)复数的加法法则
设,,()是任意两个复数,那么它们的和:
,显然,两个复数的和仍然是一个确定的复数.
(2)复数加法满足的运算律
对任意,有
交换律:
结合律:
(3)复数加法的几何意义
如图,设在复平面内复数,对应的向量分别为,,以,为邻边作平行四边形,则,即:,即对角线表示的向量就是与复数对应的向量.所以:复数的加法可以按照向量的加法来进行.
2.复数代数形式的减法运算及其几何意义
(1)复数的减法法则
类比实数集中减法的意义,我们规定,复数的减法是加法的逆运算,即把满足:的复数叫做复数减去复数的差,记作
注意:①两个复数的差是一个确定的复数;
②两个复数相加减等于实部与实部相加减,虚部与虚部相加减.
(2)复数减法的几何意义
复数 向量
3.复数代数形式的乘法运算
(1)复数的乘法法则
我们规定,复数乘法法则如下: 设,是任意两个复数,那么它们的乘积为
,
即
(2)复数乘法满足的运算律
复数乘法的交换律、结合律、分配律
(交换律)
(结合律)
(分配律)
4.复数代数形式的除法运算
(1)定义
规定复数的除法是乘法的逆运算,即把满足(,)的复数叫做复数除以复数的商,记作或
(2)复数的除法法则
()
由此可见,两个复数相除(除数不为0),所得的商是一个确定的复数.
知识点三:实系数一元二次方程的解法
1.根的判定
当a,b,c都是实数且a≠0时,关于x的方程ax2+bx+c=0称为实系数一元二次方程,
(1)当4=b2-4ac>0时,方程有两个不相等的实数根;
(2)当4=b2- 4ac=0时,方程有两个相等的实数根;
(3)当=b2- 4ac
相关学案
这是一份中职数学高教版(2021)拓展模块一 上册第1章 充要条件1.2 充要条件优质导学案及答案,文件包含第1章充要条件知识考点-中职专用高中数学单元复习讲与测高教版2021·拓展模块一上册原卷版docx、第1章充要条件知识考点-中职专用高中数学单元复习讲与测高教版2021·拓展模块一上册解析版docx等2份学案配套教学资源,其中学案共10页, 欢迎下载使用。
这是一份中职苏教版(中职)第7章 平面向量导学案及答案,共77页。学案主要包含了题型目录,典型例题,题型专练,思路导引等内容,欢迎下载使用。
这是一份高中数学高教版(中职)基础模块下册7.1.2 平面向量的加法学案设计,文件包含第二讲平面向量的加法运算原卷版docx、第二讲平面向量的加法运算解析版docx等2份学案配套教学资源,其中学案共23页, 欢迎下载使用。