2024年中考第一次模拟考试题:数学(福建卷)(学生用)
展开(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1. 下列各数中,最小的是( )
A. B. 0C. D. 2
2.如图是国家级非物质文化遗产衢州莹白瓷的直口杯,它的主视图是( )
A. B. C. D.
3. “绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿万亩,使得湿地生态环境状况持续向好.其中数据万用科学记数法表示为( )
A. B. C. D.
4. 在平面直角坐标系中,点在( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
5. 下列运算正确的是( )
A. B. C. D.
6. 某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了人,则可得到方程( )
A. B. C. D.
7. 如图,在中,,分别以点A和点C为圆心,大于的长为半径作弧,两弧相交于P,Q两点,作直线交,于点D,E,连接.下列说法错误的是( )
A. 直线是的垂直平分线B.
C. D.
8. 下列说法正确的是( )
A. 检测“神州十六号”载人飞船零件的质量,应采用抽样调查
B. 任意画一个三角形,其外角和是是必然事件
C. 数据4,9,5,7的中位数是6
D. 甲、乙两组数据的方差分别是,,则乙组数据比甲组数据稳定
9. 如图,一款可调节的笔记本电脑支架放置在水平桌面上,调节杆,,的最大仰角为.当时,则点到桌面的最大高度是( )
A. B. C. D.
10. 已知二次函数(a是常数,)的图象上有和两点.若点,都在直线的上方,且,则的取值范围是( )
A. B. C. D.
第Ⅱ卷
二、填空题(本大题共6个小题,每小题4分,共24分)
11.如果温度上升,记作,那么温度下降记作___________ .
12.在中,,分别为边,的中点,,则的长为__________cm.
13.如图,在平行四边形中,按如下步骤作图:①以点为圆心,以适当长为半径画弧,分别交,于点,;②分别以点,为圆心,以大于的长为半径画弧,两弧在内交于点;③作射线交于点.若,则为_________.
14. 某青年排球队有12名队员,年龄的情况如下表:
则这12名队员年龄的中位数是______岁.
15.如图,在中,,,,将绕点逆时针旋转到的位置,点的对应点首次落在斜边上,则点的运动路径的长为_________.
16.下面是勾股定理的一种证明方法:图1所示纸片中,,四边形,是正方形.过点,将纸片分别沿与平行、垂直两个方向剪裁成四部分,并与正方形,拼成图2.
(1)若,的面积为16,则纸片Ⅲ的面积为________.
(2)若,则________.
三、解答题(本大题共9个小题,共86分.解答应写出文字说明,证明过程或演算步骤)
17.(8分) 计算:.
18.(8分)解不等式组:
19.(8分)如图,已知,,.求证:.
20. (8分)先化简,再求值:,其中.
21. (8分)如图,在中,,以为直径的交边于点D,过点C作的切线,交的延长线于点E.
(1)求证:;
(2)若,,求的半径.
22. (10分)首届楚文化节在荆州举办前,主办方为使参与服务的志愿者队伍整齐,随机抽取了部分志愿者,对其身高进行调查,将身高(单位:)数据分A,B,C,D,E五组制成了如下的统计图表(不完整).
根据以上信息回答:
(1)这次被调查身高的志愿者有___________人,表中的___________,扇形统计图中的度数是___________;
(2)若组的4人中,男女各有2人,以抽签方式从中随机抽取两人担任组长.请列表或画树状图,求刚好抽中两名女志愿者的概率.
23. (10分)视力表中蕴含着很多数学知识,如:每个“E”形图都是正方形结构,同一行的“E”是全等图形且对应着同一个视力值,不同的检测距离需要不同的视力表.
素材1 国际通用的视力表以5米为检测距离,任选视力表中7个视力值n,测得对应行的“E”形图边长b(mm),在平面直角坐标系中描点如图1.
探究1 检测距离为5米时,归纳n与b的关系式,并求视力值1.2所对应行的“E”形图边长.
素材2 图2为视网膜成像示意图,在检测视力时,眼睛能看清最小“E”形图所成角叫做分辨视角,视力值与分辨视角(分)的对应关系近似满足.
探究2 当时,属于正常视力,根据函数增减性写出对应的分辨视角的范围.
素材3 如图3,当确定时,在A处用边长为的I号“E”测得的视力与在B处用边长为的Ⅱ号“E”测得的视力相同.
探究3 若检测距离为3米,求视力值1.2所对应行的“E”形图边长.
24. (13分)已知:关于的函数.
(1)若函数的图象与坐标轴有两个公共点,且,则的值是___________;
(2)如图,若函数的图象为抛物线,与轴有两个公共点,,并与动直线交于点,连接,,,,其中交轴于点,交于点.设的面积为,的面积为.
①当点为抛物线顶点时,求的面积;
②探究直线在运动过程中,是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
25. (13分)如图1,点为矩形的对称中心,,,点为边上一点,连接并延长,交于点,四边形与关于所在直线成轴对称,线段交边于点.
(1)求证:;
(2)当时,求的长;
(3)令,.
①求证:;
②如图2,连接,,分别交,于点,.记四边形的面积为,的面积为.当时,求的值.
年龄/岁
18
19
20
21
22
人数
3
5
2
1
1
组别
身高分组
人数
A
3
B
2
C
D
5
E
4
2024年中考第一次模拟考试题:数学(北京卷)(学生用): 这是一份2024年中考第一次模拟考试题:数学(北京卷)(学生用),共10页。试卷主要包含了已知,化简求值等内容,欢迎下载使用。
2024年中考第一次模拟考试题:数学(北京卷)(教师用): 这是一份2024年中考第一次模拟考试题:数学(北京卷)(教师用),共27页。试卷主要包含了填空题,解答题解答应写出文字说明等内容,欢迎下载使用。
2024年中考第一次模拟考试题:数学(安徽卷)(教师用): 这是一份2024年中考第一次模拟考试题:数学(安徽卷)(教师用),共21页。试卷主要包含了已知点,在直线等内容,欢迎下载使用。