|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年新高考数学一轮复习题型归类与强化测试专题37等差数列及其前n项和(教师版)
    立即下载
    加入资料篮
    2024年新高考数学一轮复习题型归类与强化测试专题37等差数列及其前n项和(教师版)01
    2024年新高考数学一轮复习题型归类与强化测试专题37等差数列及其前n项和(教师版)02
    2024年新高考数学一轮复习题型归类与强化测试专题37等差数列及其前n项和(教师版)03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习题型归类与强化测试专题37等差数列及其前n项和(教师版)

    展开
    这是一份2024年新高考数学一轮复习题型归类与强化测试专题37等差数列及其前n项和(教师版),共18页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    【考纲要求】
    1.理解等差数列的概念.
    2.掌握等差数列的通项公式与前n项和公式.
    3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.
    4.了解等差数列与一次函数的关系.
    【考点预测】
    1.等差数列的有关概念
    (1)等差数列的定义
    一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示,定义表达式为an-an-1=d(常数)(n≥2,n∈N*).
    (2)等差中项
    若三个数a,A,b成等差数列,则A叫做a与b的等差中项,且有A=eq \f(a+b,2).
    2.等差数列的有关公式
    (1)通项公式:an=a1+(n-1)d.
    (2)前n项和公式:Sn=na1+eq \f(nn-1,2)d或Sn=eq \f(na1+an,2).
    3.等差数列的常用性质
    (1)通项公式的推广:an=am+(n-m)d(n,m∈N*).
    (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an.
    (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.
    (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
    (5)S2n-1=(2n-1)an.
    (6)等差数列{an}的前n项和为Sn,eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(Sn,n)))为等差数列.
    【常用结论】
    1.关于等差数列奇数项和与偶数项和的性质
    ①若项数为2n,则S偶-S奇=nd,eq \f(S奇,S偶)=eq \f(an,an+1);
    ②若项数为2n-1,则S偶=(n-1)an,S奇=nan,S奇-S偶=an,eq \f(S奇,S偶)=eq \f(n,n-1).
    2.两个等差数列{an},{bn}的前n项和Sn,Tn之间的关系为eq \f(S2n-1,T2n-1)=eq \f(an,bn).
    【方法技巧】
    1.等差数列的基本运算的解题策略
    (1)等差数列的通项公式及前n项和公式共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了方程思想.
    (2)数列的通项公式和前n项和公式在解题中起到变量代换的作用,而a1和d是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.
    2.等差数列的判定与证明方法
    3.如果{an}为等差数列,m+n=p+q,则am+an=ap+aq(m,n,p,q∈N*).因此,若出现am-n,am,am+n等项时,可以利用此性质将已知条件转化为与am(或其他项)有关的条件;若求am项,可由am=eq \f(1,2)(am-n+am+n)转化为求am-n,am+n或am-n+am+n的值.
    4.等差数列前n项和的性质
    在等差数列{an}中,Sn为其前n项和,则
    (1)S2n=n(a1+a2n)=…=n(an+an+1);
    (2)S2n-1=(2n-1)an;
    (3)当项数为偶数2n时,S偶-S奇=nd;项数为奇数2n-1时,S奇-S偶=a中,S奇∶S偶=n∶(n-1).
    5.求等差数列{an}的前n项和Sn的最值的方法

    二、【题型归类】
    【题型一】等差数列的基本运算
    【典例1】记Sn为等差数列{an}的前n项和.若a1=-2,a2+a6=2,则S10=________.
    【解析】设等差数列{an}的公差为d,
    则a2+a6=2a1+6d=2×(-2)+6d=2.
    解得d=1.
    所以S10=10×(-2)+eq \f(10×9,2)×1=25.
    【典例2】将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{an},则{an}的前n项和为__________.
    【解析】法一(观察归纳法) 数列eq \b\lc\{\rc\}(\a\vs4\al\c1(2n-1))的各项为1,3,5,7,9,11,13,…;数列{3n-2}的各项为1,4,7,10,13,….现观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列,则an=1+6(n-1)=6n-5.
    故前n项和为Sn=eq \f(n(a1+an),2)
    =eq \f(n(1+6n-5),2)=3n2-2n.
    法二(引入参变量法) 令bn=2n-1,cm=3m-2,bn=cm,则2n-1=3m-2,即3m=2n+1,m必为奇数.
    令m=2t-1,则n=3t-2(t=1,2,3,…).
    at=b3t-2=c2t-1=6t-5,即an=6n-5.
    以下同法一.
    【典例3】已知等差数列{an}的前n项和为Sn,若S8=a8=8,则公差d=( )
    A.eq \f(1,4) B.eq \f(1,2) C.1 D.2
    【解析】∵S8=a8=8,∴a1+a2+…+a8=a8,
    ∴S7=7a4=0,则a4=0.
    ∴d=eq \f(a8-a4,8-4)=2.
    故选D.
    【题型二】等差数列的判定与证明
    【典例1】已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.
    ①数列{an}是等差数列;②数列{eq \r(Sn)}是等差数列;③a2=3a1.
    注:若选择不同的组合分别解答,则按第一个解答计分.
    【解析】①③⇒②.
    已知{an}是等差数列,a2=3a1.
    设数列{an}的公差为d,
    则a2=3a1=a1+d,得d=2a1,
    所以Sn=na1+eq \f(nn-1,2)d=n2a1.
    因为数列{an}的各项均为正数,
    所以eq \r(Sn)=neq \r(a1),
    所以eq \r(Sn+1)-eq \r(Sn)=(n+1)eq \r(a1)-neq \r(a1)=eq \r(a1)(常数),所以数列{eq \r(Sn)}是等差数列.
    ①②⇒③.
    已知{an}是等差数列,{eq \r(Sn)}是等差数列.
    设数列{an}的公差为d,
    则Sn=na1+eq \f(nn-1,2)d=eq \f(1,2)n2d+eq \b\lc\(\rc\)(\a\vs4\al\c1(a1-\f(d,2)))n.
    因为数列{eq \r(Sn)}是等差数列,所以数列{eq \r(Sn)}的通项公式是关于n的一次函数,则a1-eq \f(d,2)=0,即d=2a1,所以a2=a1+d=3a1.
    ②③⇒①.
    已知数列{eq \r(Sn)}是等差数列,a2=3a1,
    所以S1=a1,S2=a1+a2=4a1.
    设数列{eq \r(Sn)}的公差为d,d>0,
    则eq \r(S2)-eq \r(S1)=eq \r(4a1)-eq \r(a1)=d,得a1=d2,
    所以eq \r(Sn)=eq \r(S1)+(n-1)d=nd,
    所以Sn=n2d2,
    所以an=Sn-Sn-1=n2d2-(n-1)2d2=2d2n-d2(n≥2),是关于n的一次函数,且a1=d2满足上式,所以数列{an}是等差数列.
    【典例2】已知在数列{an}中,a1=1,an=2an-1+1(n≥2,n∈N*),记bn=lg2(an+1).
    (1)判断{bn}是否为等差数列,并说明理由;
    (2)求数列{an}的通项公式.
    【解析】(1){bn}是等差数列,理由如下:
    b1=lg2(a1+1)=lg22=1,
    当n≥2时,bn-bn-1=lg2(an+1)-lg2(an-1+1)
    =lg2eq \f(an+1,an-1+1)=lg2eq \f(2an-1+2,an-1+1)=1,
    ∴{bn}是以1为首项,1为公差的等差数列.
    (2)由(1)知,bn=1+(n-1)×1=n,
    ∴an+1==2n,
    ∴an=2n-1.
    【典例3】已知数列{an}满足a1=1,且nan+1-(n+1)an=2n2+2n.
    (1)求a2,a3;
    (2)证明数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))是等差数列,并求{an}的通项公式.
    【解析】(1)由题意可得a2-2a1=4,
    则a2=2a1+4,又a1=1,所以a2=6.
    由2a3-3a2=12,得2a3=12+3a2,
    所以a3=15.
    (2)由已知得eq \f(nan+1-n+1an,nn+1)=2,
    即eq \f(an+1,n+1)-eq \f(an,n)=2,
    所以数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))是首项为eq \f(a1,1)=1,公差为d=2的等差数列,
    则eq \f(an,n)=1+2(n-1)=2n-1,
    所以an=2n2-n.
    【题型三】等差数列项的性质
    【典例1】设Sn为等差数列{an}的前n项和,且4+a5=a6+a4,则S9等于( )
    A.72 B.36 C.18 D.9
    【解析】∵a6+a4=2a5,
    ∴a5=4,
    ∴S9=eq \f(9a1+a9,2)=9a5=36.
    故选B.
    【典例2】在等差数列{an}中,若a2+a4+a6+a8+a10=80,则a7-eq \f(1,2)a8的值为( )
    A.4 B.6 C.8 D.10
    【解析】∵a2+a4+a6+a8+a10=5a6=80,
    ∴a6=16,又a6+a8=2a7,
    ∴a7=eq \f(1,2)a6+eq \f(1,2)a8,
    即a7-eq \f(1,2)a8=eq \f(1,2)a6=8.
    选C.
    【典例3】已知数列{an}满足2an=an-1+an+1(n≥2),a2+a4+a6=12,a1+a3+a5=9,则a3+a4等于( )
    A.6 B.7
    C.8 D.9
    【解析】因为2an=an-1+an+1,
    所以{an}是等差数列,
    由等差数列性质可得a2+a4+a6=3a4=12,
    a1+a3+a5=3a3=9,
    所以a3+a4=3+4=7.
    故选B.
    【题型四】等差数列前n项和性质的应用
    【典例1】已知等差数列{an}的前10项和为30,它的前30项和为210,则前20项和为( )
    A.100 B.120
    C.390 D.540
    【解析】设Sn为等差数列{an}的前n项和,则S10,S20-S10,S30-S20成等差数列,
    所以2(S20-S10)=S10+(S30-S20),
    又等差数列{an}的前10项和为30,前30项和为210,
    所以2(S20-30)=30+(210-S20),解得S20=100.
    故选A.
    【典例2】在等差数列{an}中,a1=-2 018,其前n项和为Sn,若eq \f(S12,12)-eq \f(S10,10)=2,则S2 018的值等于( )
    A.-2 018 B.-2 016
    C.-2 019 D.-2 017
    【解析】由题意知,数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(Sn,n)))为等差数列,其公差为1,所以eq \f(S2 018,2 018)=eq \f(S1,1)+(2 018-1)×1=-2 018+2 017=-1.
    所以S2 018=-2 018.
    故选A.
    【典例3】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )
    A.3 699块 B.3 474块
    C.3 402块 D.3 339块
    【解析】设每一层有n环,由题意可知,从内到外每环之间构成公差为d=9,首项为a1=9的等差数列.由等差数列的性质知Sn,S2n-Sn,S3n-S2n成等差数列,且(S3n-S2n)-(S2n-Sn)=n2d,则9n2=729,解得n=9,
    则三层共有扇面形石板S3n=S27=27×9+eq \f(27×26,2)×9=3 402(块).
    故选C.
    【题型五】等差数列的前n项和的最值
    【典例1】已知等差数列{an}的前n项和为Sn,a6+a8=6,S9-S6=3,则Sn取得最大值时n的值为( )
    A.5 B.6
    C.7 D.8
    【解析】方法一:设数列{an}的公差为d,则由题意得,eq \b\lc\{(\a\vs4\al\c1(a1+5d+a1+7d=6,,a1+6d+a1+7d+a1+8d=3,))解得eq \b\lc\{(\a\vs4\al\c1(a1=15,,d=-2.))所以an=-2n+17,由于a8>0,a9<0,所以Sn取得最大值时n的值是8,故选D.
    方法二:设数列{an}的公差为d,则由题意得,eq \b\lc\{(\a\vs4\al\c1(a1+5d+a1+7d=6,,a1+6d+a1+7d+a1+8d=3,))解得eq \b\lc\{(\a\vs4\al\c1(a1=15,,d=-2,))则Sn=15n+eq \f(n(n-1),2)×(-2)=-(n-8)2+64,所以当n=8时,Sn取得最大值,故选D.
    【典例2】设等差数列{an}的前n项和为Sn,且a1>0,a3+a10>0,a6a7<0,则满足Sn>0的最大自然数n的值为( )
    A.6 B.7
    C.12 D.13
    【解析】因为在等差数列{an}中a1>0,a6a7<0,所以a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,所以S12>0,S13<0,所以满足Sn>0的最大自然数n的值为12.
    故选C.
    三、【培优训练】
    【训练一】(多选)已知定义:在数列{an}中,若aeq \\al(2,n)-aeq \\al(2,n-1)=p(n≥2,n∈N*,p为常数),则称{an}为等方差数列.下列命题正确的是( )
    A.若{an}是等方差数列,则{aeq \\al(2,n)}是等差数列
    B.{(-1)n}是等方差数列
    C.若{an}是等方差数列,则{akn}(k∈N*,k为常数)不可能还是等方差数列
    D.若{an}既是等方差数列,又是等差数列,则该数列为常数列
    【解析】若{an}是等方差数列,则aeq \\al(2,n)-aeq \\al(2,n-1)=p,故{aeq \\al(2,n)}是等差数列,故A正确;an=(-1)n时,aeq \\al(2,n)-aeq \\al(2,n-1)=(-1)2n-(-1)2(n-1)=0,故B正确;若{an}是等方差数列,则由A知{aeq \\al(2,n)}是等差数列,从而{aeq \\al(2,kn)}(k∈N*,k为常数)是等差数列,设其公差为d,则有aeq \\al(2,kn)-aeq \\al(2,k(n-1))=d,由定义知{akn}是等方差数列,故C不正确;若{an}既是等方差数列,又是等差数列,则aeq \\al(2,n)-aeq \\al(2,n-1)=p,an-an-1=d,所以aeq \\al(2,n)-aeq \\al(2,n-1)=(an-an-1)(an+an-1)=d(an+an-1)=p,若d≠0,则an+an-1=eq \f(p,d).又an-an-1=d,解得an=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(p,d)+d)),{an}为常数列;若d=0,该数列也为常数列,故D正确.
    故选ABD.
    【训练二】多环芳香烃化合物中有不少是致癌物质,学生钟爱的快餐油炸食品中会产生苯并芘,它是由苯和芘稠合而成的一类多环芳香烃,长期食用会致癌.下面是一组多环芳香烃的结构简式和分子式:
    由此推断并十苯的分子式为________.
    【解析】因为多环芳香烃的分子式中C的下标分别是10,14,18,…,H的下标分别是8,10,12,…,所以多环芳香烃的分子式中C的下标是公差为4的等差数列,设C的下标构成的等差数列为{an},其公差为d1,则a4=18,d1=4,故an=4n+2,所以a10=42.多环芳香烃的分子式中H的下标是公差为2的等差数列,设H的下标构成的等差数列为{bn},其公差为d2,则b4=12,d2=2,故bn=2n+4.所以b10=24,所以并十苯的分子式为C42H24.
    【训练三】设数列{an}的前n项和为Sn,若eq \f(Sn,S2n)为常数,则称数列{an}为“精致数列”.已知等差数列{bn}的首项为1,公差不为0,若数列{bn}为“精致数列”,则数列{bn}的通项公式为________.
    【解析】设等差数列{bn}的公差为d,由eq \f(Sn,S2n)为常数,设eq \f(Sn,S2n)=k且b1=1,得n+eq \f(1,2)n(n-1)d=keq \b\lc\[\rc\](\a\vs4\al\c1(2n+\f(1,2)×2n(2n-1)d)),即2+(n-1)d=4k+2k(2n-1)d,整理得(4k-1)dn+(2k-1)(2-d)=0.因为对任意正整数n,上式恒成立,所以eq \b\lc\{(\a\vs4\al\c1(d(4k-1)=0,,(2k-1)(2-d)=0,))解得d=2,k=eq \f(1,4),所以数列{bn}的通项公式为bn=2n-1(n∈N*).
    【训练四】定义向量列a1,a2,a3,…,an从第二项开始,每一项与它的前一项的差都等于同一个常向量(即坐标都是常数的向量),即an=an-1+d(n≥2,且n∈N*),其中d为常向量,则称这个向量列{an}为等差向量列.这个常向量叫做等差向量列的公差向量,且向量列{an}的前n项和Sn=a1+a2+…+an.已知等差向量列{an}满足a1=(1,1),a2+a4=(6,10),则向量列{an}的前n项和Sn=____________________.
    【解析】因为向量线性运算的坐标运算,是向量的横坐标、纵坐标分别进行对应的线性运算,则等差数列的性质在等差向量列里面也适用,由等差数列的等差中项的性质知2a3=a2+a4=(6,10),解得a3=(3,5),
    则等差向量列{an}的公差向量为d=eq \f(a3-a1,2)=eq \f(3,5-1,1,2)=eq \f(3-1,5-1,2)=eq \f(2,4,2)=(1,2),
    由等差数列的通项公式可得等差向量列{an}的通项公式为an=a1+(n-1)d
    =(1,1)+(n-1)(1,2)=(1,1)+(n-1,2n-2)
    =(1+n-1,1+2n-2)=(n,2n-1),
    由等差数列的前n项和公式,可得等差向量列{an}的前n项和Sn=eq \f(na1+an,2)
    =eq \f(n[1,1+n,2n-1],2)=eq \f(n1+n,2n,2)
    =eq \f(n+n2,2n2,2)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(n+n2,2),n2)).
    【训练五】在等差数列{an}中,a3+a4=4,a5+a7=6.
    (1)求{an}的通项公式;
    (2)设{bn}=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.
    【解析】(1)设数列{an}的公差为d,由题意有2a1+5d=4,a1+5d=3,
    解得a1=1,d=eq \f(2,5),
    所以{an}的通项公式为an=eq \f(2n+3,5).
    (2)由(1)知,bn=eq \b\lc\[\rc\](\a\vs4\al\c1(\f(2n+3,5))),
    当n=1,2,3时,1≤eq \f(2n+3,5)<2,bn=1;
    当n=4,5时,2当n=6,7,8时,3≤eq \f(2n+3,5)<4,bn=3;
    当n=9,10时,4所以数列{bn}的前10项和为1×3+2×2+3×3+4×2=24.
    【训练六】等差数列{an}中,公差d<0,a2+a6=-8,a3a5=7.
    (1)求{an}的通项公式;
    (2)记Tn为数列{bn}前n项的和,其中bn=|an|,n∈N*,若Tn≥1 464,求n的最小值.
    【解析】(1)∵等差数列{an}中,公差d<0,a2+a6=-8,
    ∴a2+a6=a3+a5=-8,又∵a3a5=7,
    ∴a3,a5是一元二次方程x2+8x+7=0的两个根,且a3>a5,
    解方程x2+8x+7=0,得a3=-1,a5=-7,
    ∴eq \b\lc\{(\a\vs4\al\c1(a1+2d=-1,,a1+4d=-7,))解得a1=5,d=-3.
    ∴an=5+(n-1)×(-3)=-3n+8.
    (2)由(1)知{an}的前n项和Sn=5n+eq \f(n(n-1),2)×(-3)=-eq \f(3,2)n2+eq \f(13,2)n.
    ∵bn=|an|,∴b1=5,b2=2,b3=|-1|=1,b4=|-4|=4,
    当n≥3时,bn=|an|=3n-8.
    当n<3时,T1=5,T2=7;
    当n≥3时,Tn=-Sn+2S2=eq \f(3n2,2)-eq \f(13n,2)+14.
    ∵Tn≥1 464,∴Tn=eq \f(3n2,2)-eq \f(13n,2)+14≥1 464,
    即(3n-100)(n+29)≥0,解得n≥eq \f(100,3),
    ∴n的最小值为34.
    四、【强化测试】
    【单选题】
    1. 已知公差不为0的等差数列{an}中,a2+a4=a6,a9=aeq \\al(2,6),则a10=( )
    A.eq \f(5,2) B.5 C.10 D.40
    【解析】设公差为d,由已知得
    eq \b\lc\{(\a\vs4\al\c1(a1+d+a1+3d=a1+5d,,a1+8d=(a1+5d)2,))由于d≠0,
    故a1=d=eq \f(1,4),所以a10=eq \f(1,4)+eq \f(1,4)×9=eq \f(5,2).
    故选A.
    2. 已知数列{an}满足5an+1=25·5an,且a2+a4+a6=9,则lgeq \f(1,3)(a5+a7+a9)=( )
    A.-3 B.3 C.-eq \f(1,3) D.eq \f(1,3)
    【解析】数列{an}满足5an+1=25·5an,
    ∴an+1=an+2,即an+1-an=2,
    ∴数列{an}是等差数列,公差为2.
    ∵a2+a4+a6=9,∴3a4=9,a4=3.
    ∴a1+3×2=3,解得a1=-3.
    ∴a5+a7+a9=3a7=3×(-3+6×2)=27,
    则lgeq \f(1,3)(a5+a7+a9)=lgeq \f(1,3)33=-3.
    故选A.
    3. 在数列{an}中,a1=3,am+n=am+an(m,n∈N*),若a1+a2+a3+…+ak=135,则k=( )
    A.10 B.9 C.8 D.7
    【解析】令m=1,由am+n=am+an可得an+1=a1+an,所以an+1-an=3,
    所以{an}是首项为a1=3,公差为3的等差数列,an=3+3(n-1)=3n,
    所以a1+a2+a3+…+ak=eq \f(k(a1+ak),2)=eq \f(k(3+3k),2)=135.
    整理可得k2+k-90=0,解得k=9或k=-10(舍).
    故选B.
    4. 已知等差数列{an}满足a3+a6+a8+a11=12,则2a9-a11的值为( )
    A.-3 B.3 C.-12 D.12
    【解析】由等差中项的性质可得,
    a3+a6+a8+a11=4a7=12,
    解得a7=3,
    ∵a7+a11=2a9,
    ∴2a9-a11=a7=3.
    故选B.
    5.中国古代数学名著《张邱建算经》中有如下问题:今有十等人,每等一人,宫赐金以等次差降之(等差数列),上三人先入,得金四斤,持出;下四人后入,得金三斤,持出;中间三人未到者,亦依等次更给.则第一等人(得金最多者)得金斤数是( )
    A.eq \f(37,26) B.eq \f(37,27)
    C.eq \f(52,39) D.eq \f(56,39)
    【解析】由题设知在等差数列{an}中,
    a1+a2+a3=4,a7+a8+a9+a10=3.
    所以3a1+3d=4,4a1+30d=3,
    解得a1=eq \f(37,26).
    故选A.
    6. 已知等差数列{an}的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为( )
    A.28 B.29
    C.30 D.31
    【解析】设等差数列{an}共有2n+1项,
    则S奇=a1+a3+a5+…+a2n+1,
    S偶=a2+a4+a6+…+a2n,
    该数列的中间项为an+1,
    又S奇-S偶=a1+(a3-a2)+(a5-a4)+…+(a2n+1-a2n)=a1+d+d+…+d=a1+nd=an+1,
    所以an+1=S奇-S偶=319-290=29.
    故选B.
    7. 已知数列{an}是等差数列,若a9+3a11<0,a10·a11<0,且数列{an}的前n项和Sn有最大值,那么Sn取得最小正值时n等于( )
    A.20 B.17 C.19 D.21
    【解析】因为a9+3a11<0,
    所以a9+a11+2a11=a9+a11+a10+a12=2(a11+a10)<0 ,
    所以a10+a11<0.
    因为a10·a11<0,
    所以由等差数列的性质和求和公式可得a10>0,a11<0,
    又可得S19=19a10>0,而S20=10(a10+a11)<0,
    进而可得Sn取得最小正值时n=19.
    故选C.
    8. 已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{an}是公差不为0的等差数列,且f(a50)=f(a51),则数列{an}的前100项的和为( )
    A.-200 B.-100
    C.-50 D.0
    【解析】因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,数列{an}是公差不为0的等差数列,且f(a50)=f(a51),所以a50+a51=-2,所以S100=eq \f(100(a1+a100),2)=50(a50+a51)=-100.
    故选B.
    【多选题】
    9. 设数列{an}的前n项和为Sn,若eq \f(S2n,S4n)为常数,则称数列{an}为“吉祥数列”,则下列数列{bn}为“吉祥数列”的是( )
    A.bn=n B.bn=(-1)n(n+1)
    C.bn=4n-2 D.bn=2n
    【解析】若{bn}是等差数列,则根据等差数列求和公式知需b1+bn=kn,k∈R,则{bn}为“吉祥数列”,检验A,C可知C符合题意;
    {bn}是摆动数列,由并项求和法知S2n=n,S4n=2n,eq \f(S2n,S4n)=eq \f(n,2n)=eq \f(1,2),故B符合题意;
    根据等比数列求和公式知D不符合题意.
    故选BC.
    10. 设{an}是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论正确的是( )
    A.d<0
    B.a7=0
    C.S9>S5
    D.S6与S7均为Sn的最大值
    【解析】S6=S5+a6>S5,则a6>0,S7=S6+a7=S6,则a7=0,则d=a7-a6<0,S8=S7+a8<S7,a8<0.则a7+a8<0,所以S9=S5+a6+a7+a8+a9=S5+2(a7+a8)<S5,由a7=0,a6>0知S6,S7是Sn中的最大值.从而ABD均正确.
    故选ABD.
    11. 已知数列{an}是公差不为0的等差数列,前n项和为Sn,满足a1+5a3=S8,下列选项正确的有( )
    A.a10=0
    B.S10最小
    C.S7=S12
    D.S20=0
    【解析】根据题意,数列{an}是等差数列,若a1+5a3=S8,即a1+5a1+10d=8a1+28d,变形可得a1=-9d,又由an=a1+(n-1)d=(n-10)d,则有a10=0,故A一定正确;不能确定a1和d的符号,不能确定S10最小,故B不正确;又由Sn=na1+eq \f(n(n-1)d,2)=-9nd+eq \f(n(n-1)d,2)=eq \f(d,2)×(n2-19n),则有S7=S12,故C一定正确;则S20=20a1+eq \f(20×19,2)d=-180d+190d=10d,因为d≠0,所以S20≠0,则D不正确.
    故选AC.
    12. 设等差数列{an}的前n项和为Sn,公差为d.已知a3=12,S12>0,a7<0,则( )
    A.a6>0
    B.-eq \f(24,7)<d<-3
    C.当Sn<0时,n的最小值为13
    D.数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(Sn,an)))中的最小项为第7项
    【解析】由题意,得S12=eq \f((a1+a12),2)×12=6(a6+a7)>0.又a7<0,所以a6>0,所以A正确.根据题意得eq \b\lc\{(\a\vs4\al\c1(a7=a3+4d=12+4d<0,,a6=a3+3d=12+3d>0,,a6+a7=2a3+7d=24+7d>0,))解得-eq \f(24,7)<d<-3,所以B正确.因为S13=eq \f(a1+a13,2)×13=13a7<0,又S12>0,所以当Sn<0时,n的最小值为13,所以C正确.由上述分析可知,当n∈[1,6]时,an>0,当n∈[7,+∞)时,an<0,当n∈[1,12]时,Sn>0,当n∈[13,+∞)时,Sn<0,所以当n∈[1,6]时,eq \f(Sn,an)>0,当n∈[13,+∞)时,eq \f(Sn,an)>0,当n∈[7,12]时,eq \f(Sn,an)<0,且当n∈[7,12]时,{an}为单调递减数列(an<0),Sn为单调递减数列(Sn>0),所以eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(Sn,an)))中的最小项为第7项,所以D正确.
    故选ABCD.
    【填空题】
    13. 设Sn为等差数列{an}的前n项和,若S6=1,S12=4,则S18=________.
    【解析】在等差数列中,S6,S12-S6,S18-S12成等差数列,
    ∵S6=1,S12=4,∴1,3,S18-4成公差为2的等差数列,
    即S18-4=5,∴S18=9.
    14. 等差数列{an}与{bn}的前n项和分别为Sn和Tn,若eq \f(Sn,Tn)=eq \f(3n-2,2n+1),则eq \f(a7,b7)等于________.
    【解析】eq \f(a7,b7)=eq \f(2a7,2b7)=eq \f(a1+a13,b1+b13)=eq \f(\f(a1+a13,2)×13,\f(b1+b13,2)×13)=eq \f(S13,T13)=eq \f(3×13-2,2×13+1)=eq \f(37,27).
    15. 设等差数列{an}的前n项和为Sn.若a2=-3,S5=-10,则a5=________.
    【解析】设等差数列{an}的公差为d,
    ∵eq \b\lc\{\rc\ (\a\vs4\al\c1(a2=-3,,S5=-10,))
    即eq \b\lc\{\rc\ (\a\vs4\al\c1(a1+d=-3,,5a1+10d=-10,))
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(a1=-4,,d=1,))∴a5=a1+4d=0.
    16. 一百零八塔,位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为________.
    【解析】设该数列为{an},依题意可知,a5,a6,…成等差数列,且公差为2,a5=5,
    设塔群共有n层,则1+3+3+5+5(n-4)+eq \f(n-4n-5,2)×2=108,
    解得n=12(n=-8舍去).
    故最下面三层的塔数之和为a10+a11+a12=3a11=3×(5+2×6)=51.
    【解答题】
    17. 记Sn为等差数列{an}的前n项和.已知S9=-a5.
    (1)若a3=4,求{an}的通项公式;
    (2)若a1>0,求使得Sn≥an的n的取值范围.
    【解析】(1)设{an}的公差为d,
    由S9=-a5得a1+4d=0,
    由a3=4得a1+2d=4,
    于是a1=8,d=-2.
    因此{an}的通项公式为an=10-2n.
    (2)由(1)得a1=-4d,故an=(n-5)d,Sn=eq \f(n(n-9)d,2).
    由a1>0知d<0,故Sn≥an等价于n2-11n+10≤0,解得1≤n≤10.
    所以n的取值范围是{n|1≤n≤10,n∈N}.
    18. 已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.
    (1)求a及k的值;
    (2)已知数列{bn}满足bn=eq \f(Sn,n),证明数列{bn}是等差数列,并求其前n项和Tn.
    【解析】(1)设该等差数列为{an},则a1=a,a2=4,a3=3a,
    由已知有a+3a=8,得a1=a=2,公差d=4-2=2,
    所以Sk=ka1+eq \f(k(k-1),2)·d=2k+eq \f(k(k-1),2)×2=k2+k.
    由Sk=110,得k2+k-110=0,
    解得k=10或k=-11(舍去),故a=2,k=10.
    (2)由(1)得Sn=eq \f(n(2+2n),2)=n(n+1),
    则bn=eq \f(Sn,n)=n+1,
    故bn+1-bn=(n+2)-(n+1)=1,
    即数列{bn}是首项为2,公差为1的等差数列,
    所以Tn=eq \f(n(2+n+1),2)=eq \f(n(n+3),2).
    19. 在①数列{Sn-n2}是公差为-3的等差数列,②Sn=n2+an-5n+4,③数列{an}是公差不为0的等差数列,且a3a6=aeq \\al(2,4)这三个条件中任意选择一个,添加到下面的题目中,然后解答补充完整的题目.
    已知数列{an}中,a1=-2,{an}的前n项和为Sn,且________.
    求an.
    【解析】若选择①,
    因为a1=-2,所以S1-12=a1-1=-3.
    因为{Sn-n2}是公差为-3的等差数列,
    所以Sn-n2=-3-3(n-1)=-3n.
    所以Sn=n2-3n.
    当n≥2时,an=Sn-Sn-1=(n2-3n)-[(n-1)2-3(n-1)]=2n-4.
    当n=1时,a1=-2,符合上式.
    所以an=2n-4.
    若选择②.
    因为Sn=n2+an-5n+4,
    所以当n≥2时,Sn-1=(n-1)2+an-1-5(n-1)+4,
    两式相减,得an=n2-(n-1)2+an-an-1-5n+5(n-1),
    即an-1=2n-6.
    所以an=2n-4(n∈N*).
    若选择③,
    设等差数列{an}的公差为d,由a3a6=aeq \\al(2,4)可得(a1+2d)·(a1+5d)=(a1+3d)2.
    又a1=-2,d≠0,所以d=2,
    所以数列{an}的通项公式为an=2n-4.
    20. 若数列{an}的各项均为正数,对任意n∈N*,aeq \\al(2,n+1)=anan+2+t,t为常数,且2a3=a2+a4.
    (1)求eq \f(a1+a3,a2)的值;
    (2)求证:数列{an}为等差数列.
    【解析】(1)因为对任意n∈N*,aeq \\al(2,n+1)=anan+2+t,
    令n=2,得aeq \\al(2,3)=a2a4+t.①
    令n=1,得aeq \\al(2,2)=a1a3+t.②
    ①-②得aeq \\al(2,3)-aeq \\al(2,2)=a2a4-a1a3,即a3(a3+a1)=a2(a2+a4),
    所以eq \f(a1+a3,a2)=eq \f(a2+a4,a3)=2.
    (2)证明:aeq \\al(2,n+1)=anan+2+t,aeq \\al(2,n+2)=an+1an+3+t,
    两式相减得eq \f(an+1+an+3,an+2)=eq \f(an+an+2,an+1),
    所以数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an+an+2,an+1)))为常数列,所以eq \f(an+an+2,an+1)=eq \f(a1+a3,a2)=2,
    所以an+an+2=2an+1,
    所以数列{an}为等差数列.
    21. 在数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*).
    (1)求数列{an}的通项公式;
    (2)设Tn=|a1|+|a2|+…+|an|,求Tn.
    【解析】(1)∵an+2-2an+1+an=0,
    ∴an+2-an+1=an+1-an,
    ∴数列{an}是等差数列,设其公差为d,
    ∵a1=8,a4=2,
    ∴d=eq \f(a4-a1,4-1)=-2,
    ∴an=a1+(n-1)d=10-2n,n∈N*.
    (2)设数列{an}的前n项和为Sn,则由(1)可得,
    Sn=8n+eq \f(nn-1,2)×(-2)=9n-n2,n∈N*.
    由(1)知an=10-2n,令an=0,得n=5,
    ∴当n>5时,an<0,
    则Tn=|a1|+|a2|+…+|an|
    =a1+a2+…+a5-(a6+a7+…+an)
    =S5-(Sn-S5)=2S5-Sn
    =2×(9×5-25)-(9n-n2)=n2-9n+40;
    当n≤5时,an≥0,
    则Tn=|a1|+|a2|+…+|an|
    =a1+a2+…+an=9n-n2,
    ∴Tn=eq \b\lc\{\rc\ (\a\vs4\al\c1(9n-n2,n≤5,n∈N*,,n2-9n+40,n≥6,n∈N*.))
    22. 已知公差大于零的等差数列{an}的前n项和为Sn,且满足a2a4=65,a1+a5=18.
    (1)求数列{an}的通项公式;
    (2)是否存在常数k,使得数列{eq \r(Sn+kn)}为等差数列?若存在,求出常数k;若不存在,请说明理由.
    【解析】(1)设公差为d,因为{an}为等差数列,
    所以a1+a5=a2+a4=18,又a2a4=65,所以a2,a4是方程x2-18x+65=0的两个实数根,又公差d>0,所以a2<a4,所以a2=5,a4=13.
    所以eq \b\lc\{(\a\vs4\al\c1(a1+d=5,,a1+3d=13,))所以eq \b\lc\{(\a\vs4\al\c1(a1=1,,d=4,))所以an=4n-3.
    (2)存在.由(1)知,Sn=n+eq \f(n(n-1),2)×4=2n2-n,
    假设存在常数k,使数列{eq \r(Sn+kn)}为等差数列.
    由eq \r(S1+k)+eq \r(S3+3k)=2eq \r(S2+2k),
    得eq \r(1+k)+eq \r(15+3k)=2eq \r(6+2k),解得k=1.
    所以eq \r(Sn+kn)=eq \r(2n2)=eq \r(2)n,
    当n≥2时,eq \r(2)n-eq \r(2)(n-1)=eq \r(2),为常数,
    所以数列{eq \r(Sn+kn)}为等差数列.
    故存在常数k=1,使得数列{eq \r(Sn+kn)}为等差数列.名称


    并四苯

    并n苯
    结构简式


    分子式
    C10H8
    C14H10
    C18H12


    相关试卷

    2024年新高考数学一轮复习题型归类与强化测试专题37等差数列及其前n项和(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题37等差数列及其前n项和(学生版),共8页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题38等比数列及其前n项和(教师版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题38等比数列及其前n项和(教师版),共19页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题38等比数列及其前n项和(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题38等比数列及其前n项和(学生版),共7页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年新高考数学一轮复习题型归类与强化测试专题37等差数列及其前n项和(教师版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map