|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年新高考数学一轮复习题型归类与强化测试专题26两角和与差的正弦余弦和正切(学生版)
    立即下载
    加入资料篮
    2024年新高考数学一轮复习题型归类与强化测试专题26两角和与差的正弦余弦和正切(学生版)01
    2024年新高考数学一轮复习题型归类与强化测试专题26两角和与差的正弦余弦和正切(学生版)02
    2024年新高考数学一轮复习题型归类与强化测试专题26两角和与差的正弦余弦和正切(学生版)03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习题型归类与强化测试专题26两角和与差的正弦余弦和正切(学生版)

    展开
    这是一份2024年新高考数学一轮复习题型归类与强化测试专题26两角和与差的正弦余弦和正切(学生版),共6页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    【考纲要求】
    1.经历推导两角差余弦公式的过程,知道两角差余弦公式的意义.
    2.能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系.
    3.能运用公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆).
    【考点预测】
    1.两角和与差的正弦、余弦和正切公式
    sin(α±β)=sin__αcs__β±cs__αsin__β.
    cs(α∓β)=cs__αcs__β±sin__αsin__β.
    tan(α±β)=eq \f(tan α±tan β,1∓tan αtan β).
    2.二倍角的正弦、余弦、正切公式
    sin 2α=2sin__αcs__α.
    cs 2α=cs2α-sin2α=2cs2α-1=1-2sin2α.
    tan 2α=eq \f(2tan α,1-tan2α).
    3.函数f(α)=asin α+bcs α(a,b为常数),可以化为f(α)=eq \r(a2+b2)sin(α+φ)eq \b\lc\(\rc\)(\a\vs4\al\c1(其中tan φ=\f(b,a)))或f(α)=eq \r(a2+b2)·cs(α-φ)eq \b\lc\(\rc\)(\a\vs4\al\c1(其中tan φ=\f(a,b))).
    【常用结论】
    1.tan α±tan β=tan(α±β)(1∓tan αtan β).
    2.降幂公式:cs2α=eq \f(1+cs 2α,2),sin2α=eq \f(1-cs 2α,2).
    3.1+sin 2α=(sin α+cs α)2,
    1-sin 2α=(sin α-cs α)2,
    sin α±cs α=eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(α±\f(π,4))).
    【方法技巧】
    1.两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.
    2.运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力.
    3.常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=eq \f(α+β,2)-eq \f(α-β,2)=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;eq \f(π,4)+α=eq \f(π,2)-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))等.
    二、【题型归类】
    【题型一】和差公式的直接应用
    【典例1】已知α∈(0,π),且3cs 2α-8cs α=5,则sin α=( )
    A.eq \f(\r(5),3) B.eq \f(2,3) C.eq \f(1,3) D.eq \f(\r(5),9)
    【典例2】已知sin α=eq \f(3,5),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),tan(π-β)=eq \f(1,2),则tan(α-β)的值为( )
    A.-eq \f(2,11) B.eq \f(2,11) C.eq \f(11,2) D.-eq \f(11,2)
    【典例3】已知α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),sin α=eq \f(\r(5),5).
    (1)求sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))的值;
    (2)求cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,6)-2α))的值.
    【题型二】三角函数公式的逆用与变形应用
    【典例1】在△ABC中,若tan Atan B=tan A+tan B+1,则cs C的值为( )
    A.-eq \f(\r(2),2) B.eq \f(\r(2),2)
    C.eq \f(1,2) D.-eq \f(1,2)
    【典例2】已知sin α+cs β=1,cs α+sin β=0,则sin(α+β)=________.
    【典例3】已知sin 2α=eq \f(1,3),则cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4)))=( )
    A.-eq \f(1,3) B.eq \f(1,3)
    C.-eq \f(2,3) D.eq \f(2,3)
    【题型三】三角函数公式中变“角”
    【典例1】(多选)若taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,3)))=2eq \r(3),则( )
    A.tan α=eq \f(\r(3),13) B.tan α=eq \f(\r(3),7)
    C.tan 2α=eq \f(23\r(3),7) D.tan 2α=eq \f(7\r(3),23)
    【典例2】已知α,β都是锐角,cs(α+β)=eq \f(5,13),sin(α-β)=eq \f(3,5),则cs 2α=________.
    【题型四】三角函数公式中变“名”
    【典例1】求值:eq \f(1+cs 20°,2sin 20°)-sin 10°eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,tan 5°)-tan 5°)).
    【典例2】求4sin 20°+tan 20°的值.
    三、【培优训练】
    【训练一】如图,在平面直角坐标系xOy中,顶点在坐标原点,以x轴非负半轴为始边的锐角α与钝角β的终边与单位圆O分别交于A,B两点,x轴的非负半轴与单位圆O交于点M,已知S△OAM=eq \f(\r(5),5),点B的纵坐标是eq \f(\r(2),10).
    (1)求cs(α-β)的值;
    (2)求2α-β的值.
    【训练二】已知x,y∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),sin(x+y)=2sin(x-y),则x-y的最大值为( )
    A.eq \f(π,3) B.eq \f(π,6) C.eq \f(π,4) D.eq \f(π,8)
    【训练三】已知α-β=eq \f(π,6),tan α-tan β=3,则cs(α+β)的值为( )
    A.eq \f(1,2)+eq \f(\r(3),3) B.eq \f(1,2)-eq \f(\r(3),3)
    C.eq \f(1,3)+eq \f(\r(3),2) D.eq \f(1,3)-eq \f(\r(3),2)
    【训练四】已知函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,12))),x∈R.
    (1)求feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,4)))的值;
    (2)若cs θ=eq \f(4,5),θ∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),求feq \b\lc\(\rc\)(\a\vs4\al\c1(2θ-\f(π,3)))的值.
    【训练五】已知sin α+cs α=eq \f(3\r(5),5),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,4))),sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(3,5),β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4),\f(π,2))).
    (1)求sin 2α和tan 2α的值;
    (2)求cs(α+2β)的值.
    【训练六】设α,β∈[0,π],且满足sin αcs β-cs αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为________.
    四、【强化测试】
    【单选题】
    1. 若sin θ=eq \r(5)cs(2π-θ),则tan 2θ=( )
    A.-eq \f(\r(5),3) B.eq \f(\r(5),3) C.-eq \f(\r(5),2) D.eq \f(\r(5),2)
    2. eq \f(cs 15°+sin 15°,cs 15°-sin 15°)的值为( )
    A.eq \f(\r(3),3) B.eq \r(3)
    C.-eq \f(\r(3),3) D.-eq \r(3)
    3. 已知eq \f(cs θ,sin θ)=3cs(2π+θ),|θ|A.eq \f(8\r(2),9) B.eq \f(2\r(2),3)
    C.eq \f(4\r(2),9) D.eq \f(2\r(2),9)
    4. 若α,β都是锐角,且cs α=eq \f(\r(5),5),sin(α+β)=eq \f(3,5),则cs β=( )
    A.eq \f(2\r(5),25) B.eq \f(2\r(5),5)
    C.eq \f(2\r(5),25)或eq \f(2\r(5),5) D.eq \f(\r(5),5)或eq \f(\r(5),25)
    5. 已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=eq \f(4,5),则sin 2α=( )
    A.eq \f(1,5) B.-eq \f(1,5)
    C.eq \f(7,25) D.-eq \f(7,25)
    6. 已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))=eq \f(1,4),则cs x+cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))=( )
    A.eq \f(\r(3),4) B.-eq \f(\r(3),4)
    C.eq \f(1,4) D.±eq \f(\r(3),4)
    7. 已知sin(α+β)=eq \f(1,2),sin(α-β)=eq \f(1,3),则lgeq \r(5)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(tan α,tan β)))eq \s\up12(2)等于( )
    A.2 B.3
    C.4 D.5
    8. 已知α为第二象限角,且tan α+tan eq \f(π,12)=2tan αtan eq \f(π,12)-2,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(5π,6)))等于( )
    A.-eq \f(\r(10),10) B.eq \f(\r(10),10)
    C.-eq \f(3\r(10),10) D.eq \f(3\r(10),10)
    【多选题】
    9. 下面各式中,正确的是( )
    A.sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+\f(π,3)))=sin eq \f(π,4)cs eq \f(π,3)+eq \f(\r(3),2)cs eq \f(π,4)
    B.cs eq \f(5π,12)=eq \f(\r(2),2)sin eq \f(π,3)-cs eq \f(π,4)cs eq \f(π,3)
    C.cseq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,12)))=cs eq \f(π,4)cs eq \f(π,3)+eq \f(\r(6),4)
    D.cs eq \f(π,12)=cs eq \f(π,3)-cs eq \f(π,4)
    10. 下列四个选项中,化简正确的是( )
    A.cs(-15°)=eq \f(\r(6)-\r(2),4)
    B.cs 15°cs 105°+sin 15°sin 105°=cs(15°-105°)=0
    C.cs(α-35°)cs(25°+α)+sin(α-35°)sin(25°+α)=cs[(α-35°)-(25°+α)]=cs(-60°)=cs 60°=eq \f(1,2)
    D.sin 14°cs 16°+sin 76°cs 74°=eq \f(1,2)
    11. 已知函数f(x)=eq \f(sin 4x+\r(3)cs 4x,sin 2x-\r(3)cs 2x),则下列说法正确的是( )
    A.f(x)的最小正周期为π
    B.f(x)的最大值为2
    C.f(x)的值域为(-2,2)
    D.f(x)的图象关于eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,12),0))对称
    12. 下列结论正确的是( )
    A.sin(α-β)sin(β-γ)-cs(α-β)cs(γ-β)=-cs(α-γ)
    B.3eq \r(15)sin x+3eq \r(5)cs x=3eq \r(5)sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6)))
    C.f(x)=sin eq \f(x,2)+cs eq \f(x,2)的最大值为2
    D.tan 12°+tan 33°+tan 12°tan 33°=1
    【填空题】
    13. sin(α+β)cs(γ-β)-cs(β+α)sin(β-γ)=________.
    14. 已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=eq \f(1,2),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),0)),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,3)))的值为________.
    15. tan 25°-tan 70°+tan 70°tan 25°=________.
    16. 已知sin 10°+mcs 10°=2cs 140°,则m=________.
    【解答题】
    17. 已知α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),tan α=eq \f(1,2),求tan 2α和sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4)))的值.
    18. 已知α,β均为锐角,且sin α=eq \f(3,5),tan(α-β)=-eq \f(1,3).
    (1)求sin(α-β)的值;
    (2)求cs β的值.
    19. 已知tan α=2.
    (1)求taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))的值;
    (2)求eq \f(sin 2α,sin2α+sin αcs α-cs 2α-1)的值.
    20. 已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5),-\f(4,5))).
    (1)求sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+π))的值;
    (2)若角β满足sin(α+β)=eq \f(5,13),求cs β的值.
    21. 已知A,B均为钝角,且sin A=eq \f(\r(5),5),sin B=eq \f(\r(10),10),求A+B的值.
    22. 已知α,β均为锐角,且sin α=eq \f(3,5),tan(α-β)=-eq \f(1,3).
    (1)求sin(α-β)的值;
    (2)求cs β的值.
    相关试卷

    2024年新高考数学一轮复习题型归类与强化测试专题39数列求和(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题39数列求和(学生版),共8页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题35复数(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题35复数(学生版),共6页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题40数列的综合应用(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题40数列的综合应用(学生版),共6页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年新高考数学一轮复习题型归类与强化测试专题26两角和与差的正弦余弦和正切(学生版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map