|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年新高考数学一轮复习题型归类与强化测试专题21导数极值点偏移问题(学生版)
    立即下载
    加入资料篮
    2024年新高考数学一轮复习题型归类与强化测试专题21导数极值点偏移问题(学生版)01
    2024年新高考数学一轮复习题型归类与强化测试专题21导数极值点偏移问题(学生版)02
    2024年新高考数学一轮复习题型归类与强化测试专题21导数极值点偏移问题(学生版)03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习题型归类与强化测试专题21导数极值点偏移问题(学生版)

    展开
    这是一份2024年新高考数学一轮复习题型归类与强化测试专题21导数极值点偏移问题(学生版),共6页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    【方法技巧】
    众所周知,函数满足定义域内任意自变量都有,则函数关于直线对称;可以理解为函数在对称轴两侧,函数值变化快慢相同,且若为单峰函数,则必为的极值点. 如二次函数的顶点就是极值点,若的两根的中点为,则刚好有,即极值点在两根的正中间,也就是极值点没有偏移.
    若相等变为不等,则为极值点偏移:若单峰函数的极值点为,且函数满足定义域内左侧的任意自变量都有或,则函数极值点左右侧变化快慢不同. 故单峰函数定义域内任意不同的实数满足,则与极值点必有确定的大小关系:
    ①若,则称为极值点左偏;②若,则称为极值点右偏.[来源:学_科_X_K]
    1.对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:
    (1)定函数(极值点为x0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x0.
    (2)构造函数,即根据极值点构造对称函数F(x)=f(x)-f(2x0-x),若证x1x2>xeq \\al(2,0),则令F(x)=f(x)-feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(xeq \\al(2,0),x))).
    (3)判断单调性,即利用导数讨论F(x)的单调性.
    (4)比较大小,即判断函数F(x)在某段区间上的正负,并得出f(x)与f(2x0-x)的大小关系.
    (5)转化,即利用函数f(x)的单调性,将f(x)与f(2x0-x)的大小关系转化为x与2x0-x之间的关系,进而得到所证或所求.
    2.含参函数问题可考虑先消去参数,其目的就是减元,进而建立与所求解问题相关的函数.
    3.比(差)值换元就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.一般用t表示两个极值点之比(差),继而将所求解问题转化为关于t的函数问题.
    4.对数均值不等式可用对称化构造或比值换元进行证明,在解答题中,一般要先证明后应用. 设a,b>0,a≠b,则eq \f(a+b,2)>eq \f(a-b,ln a-ln b)>eq \r(ab),其中eq \f(a-b,ln a-ln b)被称之为对数平均数,上述不等式称为对数均值不等式.
    二、【题型归类】
    【题型一】消参减元
    【典例1】已知函数f(x)=ln x-ax,a为常数,若函数f(x)有两个零点x1,x2,求证:x1·x2>e2.
    【典例2】已知函数f(x)=ln(ax)+eq \f(1,2)ax2-2x,a>0.设x1,x2是函数f(x)的两个极值点,且x12.
    【题型二】对称变换
    【典例1】已知函数f(x)=eq \f(ex,x)-ln x+x-a.
    (1)若f(x)≥0,求a的取值范围;
    (2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
    【典例2】已知函数f(x)=eq \f(2,x)+ln x.
    (1)求f(x)的极值和单调区间;
    (2)若函数g(x)=f(x)-a(a>2)的两个零点为x1,x2,证明:x1+x2>4.
    【题型三】比(差)值换元
    【典例1】已知函数f(x)=xln x的图象与直线y=m交于不同的两点A(x1,y1),B(x2,y2).求证:x1x2【典例2】已知函数f(x)=eq \f(ln x,x)-meq \b\lc\(\rc\)(\a\vs4\al\c1(m∈\b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,e)))))
    的两个零点为x1,x2,证明:ln x1+ln x2>2.
    【题型四】对数均值不等式
    【典例1】设函数其图象与轴交于两点,且.
    (1)求实数的取值范围;
    (2)证明:为函数的导函数);
    【典例2】已知f(x)=a-eq \f(1,x)-ln x有两个零点x1,x2,且x1三、【培优训练】
    【训练一】已知函数f(x)=xe-x.
    (1)求函数f(x)的单调区间;
    (2)若x1≠x2且f(x1)=f(x2),求证:x1+x2>2.
    【训练二】已知函数f(x)=xln x-eq \f(1,2)mx2-x,m∈R.
    (1)若g(x)=f′(x)(f′(x)为f(x)的导函数),求函数g(x)在区间[1,e]上的最大值;
    (2)若函数f(x)有两个极值点x1,x2,求证:x1x2>e2.
    【训练三】已知函数,.
    (1)求函数的单调区间;
    (2)若,且,证明:.
    【训练四】已知函数有两个极值点x1,x2.
    (1)求实数m的取值范围;
    (2)证明:x1x2<4.
    【训练五】已知函数f(x)=x(1-ln x).
    (1)讨论f(x)的单调性;
    (2)设a,b为两个不相等的正数,且bln a-aln b=a-b,证明:2【训练六】已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.
    (1)求a的取值范围;
    (2)设x1,x2是f(x)的两个零点,求证:x1+x2<2.
    四、【强化测试】
    【解答题】
    1. 已知函数f(x)=eq \f(2,x)+ln x,若x1≠x2,且f(x1)=f(x2),求证:x1+x2>4.
    2. 已知函数f(x)=eq \f(ex,ex),f(x1)=f(x2)=t(0证明:x1+x2>2x1x2.
    3. 已知函数f(x)=x-ln x-a有两个不同的零点x1,x2.
    (1)求实数a的取值范围;
    (2)证明:x1+x2>a+1.
    4. 已知f(x)=x2-2aln x,a∈R.若y=f(x)有两个零点x1,x2(x1(1)求实数a的取值范围;
    (2)若x0是y=f(x)的极值点,求证:x1+3x2>4x0.
    5. 已知a是实数,函数f(x)=aln x-x.
    (1)讨论f(x)的单调性;
    (2)若f(x)有两个相异的零点x1,x2且x1>x2>0,求证:x1x2>e2.
    6. 已知函数f(x)=ln x-ax有两个零点x1,x2.
    (1)求实数a的取值范围;
    (2)求证:x1·x2>e2.
    7. 已知函数f(x)=eq \f(x2,a)-2ln x(a∈R,a≠0).
    (1)求函数f(x)的极值;
    (2)若函数f(x)有两个零点x1,x2(x14.
    8. 已知函数f(x)=aex-x,a∈R.若f(x)有两个不同的零点x1,x2.证明:x1+x2>2.
    9. 已知函数.
    (1)若恒成立,求实数的取值范围.
    (2)若函数的两个零点为,,证明:.
    10. 已知函数.
    (1)若函数在定义域内单调递增,求实数的取值范围;
    (2)若函数存在两个极值点,求证:.
    11. 已知,,(其中e为自然对数的底数).
    (1)求函数的单调区间;
    (2)若,函数有两个零点,,求证:.
    12. 已知函数.
    (1)当时,求的最大值;
    (2)设点和是曲线上不同的两点,且,若恒成立,求实数k的取值范围.
    相关试卷

    2024年新高考数学一轮复习题型归类与强化测试专题22导数隐零点问题(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题22导数隐零点问题(学生版),共6页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    高考数学导数专题-29.极值点偏移问题(精讲): 这是一份高考数学导数专题-29.极值点偏移问题(精讲),共57页。试卷主要包含了极值点偏移的含义,极值点偏移问题的一般解法,极值点偏移问题的类型等内容,欢迎下载使用。

    高考数学导数专题-15.同构视角解决极值点偏移问题: 这是一份高考数学导数专题-15.同构视角解决极值点偏移问题,共5页。试卷主要包含了同构单调性解决极值点偏移,已知函数,若,不妨设,求证,若方程有两个实根,且,证明等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年新高考数学一轮复习题型归类与强化测试专题21导数极值点偏移问题(学生版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map