所属成套资源:2024年新高考数学一轮复习达标检测全套
2024年新高考数学一轮复习达标检测第17讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版)
展开
这是一份2024年新高考数学一轮复习达标检测第17讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版),共5页。
A.a≤1 B.a≥1
C.a≤2 D.a≥2
【解析】选A.由题意知f(x)mineq \b\lc\(\rc\)(\a\vs4\al\c1(x∈\b\lc\[\rc\](\a\vs4\al\c1(\f(1,2),1))))≥g(x)min(x∈[2,3]),因为f(x)min=5,g(x)min=4+a,所以5≥4+a,即a≤1,故选A.
2.设函数f(x)=exeq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(3,x)-3))-eq \f(a,x),若不等式f(x)≤0有正实数解,则实数a的最小值为________.
【解析】原问题等价于存在x∈(0,+∞),使得a≥ex(x2-3x+3),令g(x)=ex(x2-3x+3),x∈(0,+∞),则a≥g(x)min,而g′(x)=ex(x2-x).由g′(x)>0可得x∈(1,+∞),由g′(x)1,当x∈(1,x0)时,恒有f(x)-eq \f(x2,2)+2x+eq \f(1,2)>k(x-1)成立,求k的取值范围.
【解析】(1)由已知可得f(x)的定义域为(0,+∞).因为f′(x)=eq \f(1,x)-a,所以f′(1)=1-a=0,所以a=1,所以f′(x)=eq \f(1,x)-1=eq \f(1-x,x),令f′(x)>0得0k(x-1).令g(x)=ln x-eq \f(x2,2)+x-eq \f(1,2)-k(x-1)(x>1),则g′(x)=eq \f(1,x)-x+1-k=eq \f(-x2+(1-k)x+1,x),令h(x)=-x2+(1-k)x+1,x>1,h(x)的对称轴为x=eq \f(1-k,2).
①当eq \f(1-k,2)≤1时,即k≥-1,易知h(x)在(1,x0)上单调递减,所以h(x)g(1)=0恒成立,符合题意.
②当eq \f(1-k,2)>1时,即kh(1)=1-k>0,所以g′(x)>0,所以g(x)在(1,x0)上单调递增.所以g(x)>g(1)=0恒成立,符合题意.
综上,k的取值范围是(-∞,1).
6.设f(x)=xex,g(x)=eq \f(1,2)x2+x.
(1)令F(x)=f(x)+g(x),求F(x)的最小值;
(2)若任意x1,x2∈[-1,+∞),且x1>x2,有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,求实数m的取值范围.
【解析】(1)因为F(x)=f(x)+g(x)=xex+eq \f(1,2)x2+x,
所以F′(x)=(x+1)(ex+1),
令F′(x)>0,解得x>-1,令F′(x)g(x1)-g(x2)恒成立,
所以mf(x1)-g(x1)>mf(x2)-g(x2)恒成立.
令h(x)=mf(x)-g(x)=mxex-eq \f(1,2)x2-x,x∈[-1,+∞),
即只需证h(x)在[-1,+∞)上单调递增即可.
故h′(x)=(x+1)(mex-1)≥0在[-1,+∞)上恒成立,
故m≥eq \f(1,ex),而eq \f(1,ex)≤e,故m≥e,
即实数m的取值范围是[e,+∞).
[B组]—强基必备
1.已知函数f(x)=ax+x2-xln a(a>0,a≠1).
(1)求函数f(x)的极小值;
(2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a 的取值范围.
【解析】 (1)f′(x)=axln a+2x-ln a=2x+(ax-1)ln a.
∵当a>1时,ln a>0,函数y=(ax-1)ln a在R上是增函数,
当00,即f(1)>f(-1);
当0
相关试卷
这是一份2024年新高考数学一轮复习知识梳理与题型归纳第18讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版),共7页。
这是一份2024年新高考数学一轮复习题型归纳与达标检测第18讲导数的应用——利用导数研究不等式恒成立(能成立)问题(讲)(Word版附解析),共6页。
这是一份高中数学高考第18讲 导数的应用——利用导数研究不等式恒成立(能成立)问题(学生版),共7页。