高中数学第二章平面向量本章复习教案苏教版必修4
展开
这是一份高中数学第二章平面向量本章复习教案苏教版必修4,共22页。
第二章 平面向量本章复习eq \o(\s\up7(),\s\do5(整体设计))知识网络 教学分析 向量的重要性可与函数相比,函数思想是整个中学数学的最重要的思想之一,它贯穿于整个中学的每一个学习阶段;而向量可作为一种重要的解题方法,渗透于高中数学的许多章节,它与函数、三角、复数、立体几何、解析几何等知识的联系是显而易见的.因此复习时,要特别重视向量概念、向量运算,并善于与物理中、生活中的模型进行模拟和联想,利用直观的教学手段和方法,帮助学生正确理解、掌握向量的有关概念、运算及几何意义.变抽象为形象,变被动接受为主动运用向量的知识分析问题、解决问题,从而提高本章复习的教学质量.数与形的紧密结合是本章的显著特点,向量与几何之间存在着对应关系;向量又有加减、数乘积及数量积等运算,也有平面向量的坐标运算,因而向量具有几何和代数的双重属性,能沟通几何与代数,从而给了我们一种新的数学方法——向量法.向量方法宜于把几何从思辩数学化成算法数学,将技巧性解题化成算法解题,因此是一种通法.在教学中引导学生搞清向量是怎样用有向线段表示的,掌握向量运算法则的基本依据,搞清向量运算和实数运算的联系和区别,认识向量平移是平面向量坐标运算的基础.将一个实际问题转化为向量之间的关系问题,用向量建立一个数学模型是一个难点问题.在复习课教学中应注意多举例,引导学生思考并及时总结,逐步培养学生用向量工具解题的思维方向.学习本章应注意类比,如向量的运算法则及运算律可与实数相应的运算法则及运算律进行横向类比.而一维情形下向量的共线条件,到二维情形下的平面向量基本定理,进而今后推广到三维情形下的空间向量基本定理,又可进行纵向类比.向量是数形结合的载体,在本章学习中,一方面通过数形结合来研究向量的概念和运算;另一方面,我们又以向量为工具,数形结合地解决数学和物理的有关问题.同时,向量的坐标表示为我们用代数方法研究几何问题提供了可能,丰富了我们研究问题的范围和手段.充分发挥多媒体的作用,向量是建立在平面上的,平移是向量的常见现象,而给学生直观、动态的演示能使学生理解、掌握问题.在复习完本章内容后,还要引导学生反思,重新概括研究思路,这样可以使学生体会数学中研究问题的思想方法,提升学生的数学思维水平.三维目标 1.通过展示本章知识网络结构,列出复习提纲,引导学生补充相关内容,加深理解向量概念,平面向量的基本定理,两向量平行与垂直的条件,平面向量的坐标表示及其坐标运算,向量的数量积及其性质,向量的实际应用等知识.提高分析问题、解决问题的能力.2.通过本节对向量有关内容的复习,使学生进一步认识事物之间的相互转化.培养学生的数学应用意识.深刻领悟数形结合思想,转化与化归思想.3.通过一题多解的活动,培养学生的发散性思维能力,同时通过多种方法间的沟通,让学生体验数学的统一美、内在美,逐渐学会用美的心态来看待数学.重点难点 教学重点:向量的运算,向量平行、垂直的条件,平面向量的坐标表示及其运算、数量积的理解运用.教学难点:向量的概念、运算法则的理解和利用向量解决物理问题和几何问题.对于本章内容的学习,要注意体会数形结合的数学思想方法的应用.课时安排 2课时eq \o(\s\up7(),\s\do5(教学过程))第1课时导入新课 思路1.(直接导入)前面一段,我们一起探究学习了向量的有关知识,并掌握了一定的分析问题与解决问题的方法,提高了我们的思维能力.这一节,我们一起对本章进行小结与复习,进一步巩固本章所学的知识,强化向量的综合应用.思路2.(问题导入)由于向量具有几何形式和代数形式的双重身份,与代数、几何都有着密切的关系,因而成为中学数学知识网络的一个交汇点.在中学数学教材中的地位也越来越重要,也成为近几年全国及各省高考命题的重点和热点,根据你所学的本章知识解释一下,它是怎样具有代数、几何双重身份的?向量是怎样进行代数运算的?又是怎样进行几何运算的?你对向量的哪种运算掌握得最好?由此展开全章的复习.推进新课 eq \b\lc\ \rc\ (\a\vs4\al\co1(知识巩固))向量的概念、运算及其综合应用.活动:本章概念较多,学生可能不知如何进行复习,从头到尾重新翻看教材,学生兴趣不大,效果也不好.教师要点拨学生不仅要善于学习知识,而且还要善于归纳整理所学的知识.首先教师引导学生回忆从前所学,指导学生归类比较.比较是最好的学习方法,如向量的表示法有:几何表示法为eq \o(AB,\s\up6(→)),a(手写时为eq \o(a ,\s\up6(→))),坐标表示法为a=xi+yj=(x,y).有哪些特殊的向量:a=0 |a|=0.向量a0为单位向量|a0|=1.相等的向量:大小相等,方向相同.a=b (x1,y1)=(x2,y2) eq \b\lc\{\rc\ (\a\vs4\al\co1(x1=x2,,y1=y2))等等.指导学生从代数运算和几何运算两方面展开思考归纳,引导学生把向量的运算类比数的运算.向量的加减法,数与向量的乘积,向量的数量积及其各运算的坐标表示和性质较杂乱,教师可以利用多媒体课件或投影仪打出下表让学生填写相关内容:本章的重要定理及公式:(1)平面向量基本定理:e1、e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1、λ2,使a=λ1e1+λ2e2.(2)两个向量平行的条件:a∥b(b≠0) 存在惟一的实数λ使得a=λb;若a=(x1,y1),b=(x2,y2),则a∥b x1y2-x2y1=0(b可以为0).(3)两个向量垂直的条件当a、b≠0时,a⊥b a·b=0 x1x2+y1y2=0.讨论结果:①~③略.eq \b\lc\ \rc\ (\a\vs4\al\co1(应用示例))例1已知a=(1,2),b=(-3,2),当k为何值时,(1)ka+b与a-3b垂直?(2)ka+b与a-3b平行?平行时它们是同向还是反向?活动:向量的垂直、平行关系是向量间最基本、最重要的位置关系,是高考考查的重要内容之一.在解决本题时,教师首先引导学生思考回顾,如何用数量积及有关的定理解决有关长度,角度,垂直的问题;共线的向量和平面向量的两条基本定理,揭示了共线向量和平面向量的基本结构,它们是进一步研究向量的基础,那么怎样应用向量共线这个条件呢?让学生通过例题仔细体会,进一步熟练、提高.解:(1)ka+b=k(1,2)+(-3,2)=(k-3,2k+2),a-3b=(1,2)-3(-3,2)=(10,-4).当(ka+b)·(a-3b)=0时,这两个向量垂直.由(k-3)×10+(2k+2)×(-4)=0,解得k=19,即当k=19时,ka+b与a-3b垂直.(2)当ka+b与a-3b平行时,存在惟一实数λ,使ka+b=λ(a-3b).由(k-3,2k+2)=λ(10,-4),得eq \b\lc\{\rc\ (\a\vs4\al\co1(k-3=10λ,,2k+2=-4λ.))这是一个以k、λ为未知数的二元一次方程组.解这个方程组得k=-eq \f(1,3),λ=-eq \f(1,3),即当k=-eq \f(1,3)时,ka+b与a-3b平行,这时ka+b=-eq \f(1,3)a+b.因为λ=-eq \f(1,3)