所属成套资源:冲刺985、211名校高考数学重难点培优全攻略(新高考专用)
- 第05讲 导数的综合应用(3大考点母题突破+强化训练)-冲刺985、211名校高考数学重难点培优全攻略(新高考专用) 试卷 1 次下载
- 第06讲三角函数的图象与性质(3大考点+强化训练)-冲刺985、211名校高考数学重难点培优全攻略(新高考专用) 试卷 0 次下载
- 第08讲 等差数列、等比数列(3大考点+强化训练)-冲刺985、211名校高考数学重难点培优全攻略(新高考专用) 试卷 0 次下载
- 第09讲 数列求和及其综合应用(2大考点+强化训练)-冲刺985、211名校高考数学重难点培优全攻略(新高考专用) 试卷 0 次下载
- 第10讲 空间几何体(3大考点+强化训练)-冲刺985、211名校高考数学重难点培优全攻略(新高考专用) 试卷 0 次下载
第07讲三角恒等变换与解三角形(3大考点+强化训练)-冲刺985、211名校高考数学重难点培优全攻略(新高考专用)
展开
这是一份第07讲三角恒等变换与解三角形(3大考点+强化训练)-冲刺985、211名校高考数学重难点培优全攻略(新高考专用),文件包含第07讲三角恒等变换与解三角形3大考点+强化训练原卷版docx、第07讲三角恒等变换与解三角形3大考点+强化训练解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
2.三角恒等变换以选择题、填空题为主,解三角形以解答题为主,中等难度.
知识导图
考点分类讲解
考点一:三角恒等变换
1.两角和与差的正弦、余弦、正切公式
(1)sin(α±β)=sinαcsβ±csαsinβ;
(2)cs(α±β)=csαcsβ∓sinαsinβ;
(3)tan(α±β)=eq \f(tan α±tan β,1∓tan αtan β).
2.二倍角的正弦、余弦、正切公式
(1)sin 2α=2sinαcsα;
(2)cs 2α=cs2α-sin2α=2cs2α-1=1-2sin2α;
(3)tan 2α=eq \f(2tan α,1-tan2α).
规律方法 三角恒等变换的“4大策略”
(1)常值代换:特别是“1”的代换,1=sin2θ+cs2θ=tan 45°等.
(2)项的拆分与角的配凑:如sin2α+2cs2α=(sin2α+cs2α)+cs2α,α=(α-β)+β等.
(3)降幂与升幂:正用二倍角公式升幂,逆用二倍角公式降幂.
(4)弦、切互化:一般是切化弦.
考点二:正弦定理、余弦定理及综合应用
1.正弦定理:在△ABC中,eq \f(a,sin A)=eq \f(b,sin B)=eq \f(c,sin C)=2R(R为△ABC的外接圆半径).
变形:a=2Rsin A,b=2Rsin B,c=2Rsin C,sin A=eq \f(a,2R) ,sin B=eq \f(b,2R),sin C=eq \f(c,2R) ,
a∶b∶c=sin A∶sin B∶sin C等.
2.余弦定理:在△ABC中,a2=b2+c2-2bccs A.
变形:b2+c2-a2=2bccs A,cs A=eq \f(b2+c2-a2,2bc).
3.三角形的面积公式:S=eq \f(1,2)absin C=eq \f(1,2)acsin B=eq \f(1,2)bcsin A.
考向1:正弦定理、余弦定理
一、单选题
1.(2023·全国·高考真题)过点与圆相切的两条直线的夹角为,则( )
A.1B.C.D.
【答案】B
【分析】方法一:根据切线的性质求切线长,结合倍角公式运算求解;方法二:根据切线的性质求切线长,结合余弦定理运算求解;方法三:根据切线结合点到直线的距离公式可得,利用韦达定理结合夹角公式运算求解.
【详解】方法一:因为,即,可得圆心,半径,
过点作圆C的切线,切点为,
因为,则,
可得,
则,
,
即为钝角,
所以;
法二:圆的圆心,半径,
过点作圆C的切线,切点为,连接,
可得,则,
因为
且,则,
即,解得,
即为钝角,则,
且为锐角,所以;
方法三:圆的圆心,半径,
若切线斜率不存在,则切线方程为,则圆心到切点的距离,不合题意;
若切线斜率存在,设切线方程为,即,
则,整理得,且
设两切线斜率分别为,则,
可得,
所以,即,可得,
则,
且,则,解得.
故选:B.
2.在ABC中,.则A的取值范围是( )
A.(0,]B.[,)C.(0,]D.[,)
【答案】C
【详解】试题分析:
由于,根据正弦定理可知,故.又,则的范围为.故本题正确答案为C.
考点:三角形中正余弦定理的运用.
3.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=( )
A.B.C.2D.3
【答案】D
【详解】由余弦定理得,
解得(舍去),故选D.
【考点】余弦定理
【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!
4.△ABC的内角A、B、C的对边分别为a、b、c.已知,a=2,c=,则C=( )
A.B.C.D.
【答案】B
【详解】试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可
详解:sinB=sin(A+C)=sinAcsC+csAsinC,
∵sinB+sinA(sinC﹣csC)=0,
∴sinAcsC+csAsinC+sinAsinC﹣sinAcsC=0,
∴csAsinC+sinAsinC=0,
∵sinC≠0,
∴csA=﹣sinA,
∴tanA=﹣1,
∵<A<π,
∴A= ,
由正弦定理可得,
∵a=2,c=,
∴sinC== ,
∵a>c,
∴C=,
故选B.
点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.
5.在中,,BC=1,AC=5,则AB=( )
A.B.C.D.
【答案】A
【详解】分析:先根据二倍角余弦公式求csC,再根据余弦定理求AB.
详解:因为
所以,选A.
点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.
二、多选题
6.(2022·全国·高考真题)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
A.B.C.D.
【答案】AC
【分析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.
【详解】[方法一]:几何法,双曲线定义的应用
情况一
M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,
所以,因为,所以在双曲线的左支,
,, ,设,由即,则,
选A
情况二
若M、N在双曲线的两支,因为,所以在双曲线的右支,
所以,, ,设,
由,即,则,
所以,即,
所以双曲线的离心率
选C
[方法二]:答案回代法
特值双曲线
,
过且与圆相切的一条直线为,
两交点都在左支,,
,
则,
特值双曲线,
过且与圆相切的一条直线为,
两交点在左右两支,在右支,,
,
则,
[方法三]:
依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,
若分别在左右支,
因为,且,所以在双曲线的右支,
又,,,
设,,
在中,有,
故即,
所以,
而,,,故,
代入整理得到,即,
所以双曲线的离心率
若均在左支上,
同理有,其中为钝角,故,
故即,
代入,,,整理得到:,
故,故,
故选:AC.
7.三角形的三边所对的角为,,则下列说法正确的是( )
A.B.若面积为,则周长的最小值为12
C.当,时,D.若,,则面积为
【答案】ABD
【分析】由题意可得,选项A:利用正弦定理边角互化结合余弦定理即可求角的大小;选项B:由三角形面积和角可得,利用均值不等式求周长最小值即可;选项C:利用边角互化后得到的解即可;选项D:利用正弦定理求,然后后面积公式求解即可.
【详解】因为,
由题意可得,
整理得,
由正弦定理边角互化得,
又由余弦定理得,所以,A正确;
当时,,所以,当且仅当时等号成立,
所以,即,
所以,B正确;
由当,时,,解得,C错误;
由,得,由正弦定理得解得,
又因为,
所以,D正确;
故选:ABD.
三、填空题
8.(2022·全国·高考真题)已知中,点D在边BC上,.当取得最小值时, .
【答案】/
【分析】设,利用余弦定理表示出后,结合基本不等式即可得解.
【详解】[方法一]:余弦定理
设,
则在中,,
在中,,
所以
,
当且仅当即时,等号成立,
所以当取最小值时,.
故答案为:.
[方法二]:建系法
令 BD=t,以D为原点,OC为x轴,建立平面直角坐标系.
则C(2t,0),A(1,),B(-t,0)
[方法三]:余弦定理
设BD=x,CD=2x.由余弦定理得
,,
,,
令,则,
,
,
当且仅当,即时等号成立.
[方法四]:判别式法
设,则
在中,,
在中,,
所以,记,
则
由方程有解得:
即,解得:
所以,此时
所以当取最小值时,,即.
四、解答题
9.(2022·全国·高考真题)记的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为,已知.
(1)求的面积;
(2)若,求b.
【答案】(1)
(2)
【分析】(1)先表示出,再由求得,结合余弦定理及平方关系求得,再由面积公式求解即可;
(2)由正弦定理得,即可求解.
【详解】(1)由题意得,则,
即,由余弦定理得,整理得,则,又,
则,,则;
(2)由正弦定理得:,则,则,.
考向2:解三角形中的最值与范围问题
规律方法 解三角形中常见的求最值与范围问题的解题策略
(1)利用余弦定理,找三角形三边之间的关系,利用基本不等式将a+b与ab相互转化求最值范围.
(2)利用正弦定理,将边化成角的正弦,利用三角恒等变换进行化简;利用三角函数的性质求最值、范围.
一、解答题
1.(2023·河南开封·一模)记的内角A,B,C的对边分别为a,b,c,已知,且.
(1)求;
(2)若的面积为,求的周长.
【答案】(1)
(2)
【分析】(1)已知条件由正弦定理得,可求;
(2)由的面积得,余弦定理求,可得的周长.
【详解】(1)由正弦定理得,则.
(2),得,
由余弦定理,
即,则,所以,
的周长为.
2.已知函数.
(1)求函数的单调递减区间;
(2)在中,内角A,B,C的对边分别为a,b,c,且满足,求的取值范围.
【答案】(1)
(2)
【分析】(1)利用三角恒等变换化简已知条件,然后利用整体代入法求得的单调递减区间.
(2)利用余弦定理求得,结合三角函数值域的求法求得的取值范围.
【详解】(1)
令,则
所以,单调减区间是.
(2)由得:
,即,
由于,所以.
在中,,
,
于是,则,,
,所以.
3.已知中,角所对的边分别为,且.
(1)求角A的大小;
(2)若,求面积的最大值以及周长的最大值.
【答案】(1)
(2)面积的最大值为,周长的最大值为
【分析】(1)利用正弦定理角化边再结合余弦定理即可求得答案;
(2)由题意利用余弦定理结合基本不等式可得,利用三角形面积公式可得面积的最大值;再用余弦定理结合基本不等式求得,即可求得三角形周长的最大值.
【详解】(1)依题意得,,
由正弦定理,得,
所以,
因为,所以.
(2)由得,,即,
当且仅当时,等号成立,
所以的面积,
所以面积的最大值为.
又,
所以,当且仅当时,等号成立,
故的周长为,
故周长的最大值为.
4.(2023·湖南长沙·一模)在锐角中,角A,B,C所对应的边分别为a,b,c,已知.
(1)求角B的值;
(2)若,求的周长的取值范围.
【答案】(1)
(2)
【分析】(1)根据正弦定理得到,再利用余弦定理求出;
(2)根据正弦定理得到,从而得到,求出,得到,,从而求出周长的取值范围.
【详解】(1),由正弦定理得:,
即,
由余弦定理得:,
因为,
所以;
(2)锐角中,,,
由正弦定理得:,
故,
则
,
因为锐角中,,
则,,
解得:,
故,,
则,
故,
所以三角形周长的取值范围是.
【点睛】解三角形中最值或范围问题,通常涉及与边长,周长有关的范围问题,与面积有关的范围问题,或与角度有关的范围问题,
常用处理思路:①余弦定理结合基本不等式构造不等关系求出答案;
②采用正弦定理边化角,利用三角函数的范围求出最值或范围,如果三角形为锐角三角形,或其他的限制,通常采用这种方法;
③巧妙利用三角换元,实现边化角,进而转化为正弦或余弦函数求出最值
考点三:解三角形的实际应用
解三角形应用题的常考类型
(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.
(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.
规律方法 解三角形实际问题的步骤
①需要测量的数据有:点到,点的俯角;
点到,的俯角;,的距离 ……….
②第一步:计算. 由正弦定理 ;
第二步:计算. 由正弦定理 ;
第三步:计算. 由余弦定理
一、解答题
1.如图,某城市有一条从正西方通过市中心后转向东偏北方向的公路,为了缓解城市交通压力,现准备修建一条绕城高速公路,并在上分别设置两个出口在的东偏北的方向(两点之间的高速公路可近似看成直线段),由于之间相距较远,计划在之间设置一个服务区.
(1)若在的正北方向且,求到市中心的距离和最小时的值;
(2)若在市中心的距离为,此时在的平分线与的交点位置,且满足,求到市中心的最大距离.
【答案】(1),
(2)20
【分析】(1)利用正弦定理,将分别用表示,再利用基本不等式求的最小值;(2)先由化简得到,再根据三角形面积公式列方程得到与的函数关系,由函数单调性求得的最大值.
【详解】(1)设,在中,
在中,由正弦定理得
当且仅当,即时取到等号
到市中心的距离和最小时,.
(2),
,即
,
又
即
当时,
2.如图,游客从某旅游景区的景点处下上至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到,假设缆车匀速直线运动的速度为,山路长为1260,经测量,.
(1)求索道的长;
(2)问:乙出发多少后,乙在缆车上与甲的距离最短?
(3)为使两位游客在处互相等待的时间不超过,乙步行的速度应控制在什么范围内?
【答案】(1)m (2)(3)(单位:m/min)
【详解】(1)在中,因为,,
所以,,
从而.
由正弦定理,得().
(2)假设乙出发后,甲、乙两游客距离为,此时,甲行走了,乙距离处,
所以由余弦定理得,
由于,即,
故当时,甲、乙两游客距离最短.
(3)由正弦定理,
得().
乙从出发时,甲已走了(),还需走710才能到达.
设乙步行的速度为,由题意得,解得,
所以为使两位游客在处互相等待的时间不超过,乙步行的速度应控制在(单位:)范围内.
考点:正弦、余弦定理在实际问题中的应用.
【方法点睛】本题主要考查了正弦、余弦定理在实际问题中的应用,考查了考生分析问题和利用所学知识解决问题的能力,属于中档题.解答应用问题,首先要读懂题意,设出变量建立题目中的各个量与变量的关系,建立函数关系和不等关系求解.本题解得时,利用正余弦定理建立各边长的关系,通过二次函数和解不等式求解,充分体现了数学在实际问题中的应用.
3.为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤.
【答案】见解析
【详解】
要求长度,需要测量的数据有:点到,点的俯角,最后通过正弦定理得到最终结果.
强化训练
一、单选题
1.(2021·全国·高考真题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影满足,.由C点测得B点的仰角为,与的差为100;由B点测得A点的仰角为,则A,C两点到水平面的高度差约为()( )
A.346B.373C.446D.473
【答案】B
【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得,进而得到答案.
【详解】
过作,过作,
故,
由题,易知为等腰直角三角形,所以.
所以.
因为,所以
在中,由正弦定理得:
,
而,
所以
所以.
故选:B.
【点睛】本题关键点在于如何正确将的长度通过作辅助线的方式转化为.
2.(2021·全国·高考真题)若,则( )
A.B.C.D.
【答案】A
【分析】由二倍角公式可得,再结合已知可求得,利用同角三角函数的基本关系即可求解.
【详解】
,
,,,解得,
,.
故选:A.
【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出.
3.若,,且,,则的值是( )
A. B.
C.或D.或
【答案】A
【分析】先计算和的取值范围,根据取值范围解出和的值,再利用
求解的值.
【详解】∵,∴.
∵,∴,
∴,.
∵,∴,
∴,
∴
.
又∵,
∴.
故选:A.
【点睛】本题考查三角恒等变换中和差角公式的运用,难度一般.解答时,要注意三角函数值的正负问题,注意目标式与条件式角度之间的关系,然后通过和差角公式求解.
4.如图,在中,,点D在线段BC上,且,,则的面积的最大值为( )
A.B.4C.D.
【答案】C
【解析】设,则,根据三角形的面积公式求出AC,AB,然后由,根据三角函数的性质求出面积的最大值.
【详解】解:设,则.
,,,,
,同理,
其中,
,当时,,.
故选:C.
【点睛】本题考查了余弦定理和三角恒等变换,以及三角形的面积公式,考查了运算能力和转化能力,属于中档题.
5.在中,,BC边上的高等于,则( )
A.B.C.D.
【答案】C
【详解】试题分析:设
,故选C.
考点:解三角形.
6.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为,,此时气球的高是
,则河流的宽度BC等于( )
A.B.C.D.
【答案】C
【详解】,,,
所以
.
故选C.
7.已知 ∈(0,),2sin2α=cs2α+1,则sinα=
A.B.
C.D.
【答案】B
【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案.
【详解】,.
,又,,又,,故选B.
【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.
8.(22-23高三上·江苏南京·阶段练习)阻尼器是一种以提供阻力达到减震效果的专业工程装置.我国第一高楼上海中心大厦的阻尼器减震装置,被称为“定楼神器”,如图1.由物理学知识可知,某阻尼器的运动过程可近似为单摆运动,其离开平衡位置的位移和时间的函数关系为,如图2,若该阻尼器在摆动过程中连续三次到达同一位置的时间分别为,,,且,,则在一个周期内阻尼器离开平衡位置的位移大于0.5m的总时间为( )
A.B.C.1sD.
【答案】C
【分析】先根据周期求出,再解不等式,得到的范围即得解.
【详解】因为,,,所以,又,所以,
则,由可得,
所以,,
所以,,故,
所以在一个周期内阻尼器离开平衡位置的位移大于0.5m的总时间为1s.
故选:C.
二、多选题
9.(2023·海南海口·一模)如图,在棱长为1的正方体中,Q是棱上的动点,则下列说法正确的是( )
A.不存在点Q,使得
B.存在点Q,使得
C.对于任意点Q,Q到的距离的取值范围为
D.对于任意点Q,都是钝角三角形
【答案】ABC
【分析】证明直线与是异面直线判断A,当与重合时,可判断BD,设(),计算出的面积的最大值和最小值后从而可得Q到的距离的最小值和最大值,从而判断C.
【详解】由平面,平面,,平面,∴直线与是异面直线,A正确;
平面,平面,则,又,与是平面内两相交直线,所以平面,又平面,所以,即当与重合时,,B正确,此时是直角三角形,D错;
设(),,,,
,
,
所以,
,
所以时,,或1时,,所以的最大值是,最小值是,
记到的距离为,,因此的最大值是,的最小值是,C正确.
故选:ABC.
10.(2024·四川成都·模拟预测)已知中,,.下列说法中正确的是( )
A.若是钝角三角形,则
B.若是锐角三角形,则
C.的最大值是
D.的最小值是
【答案】BC
【分析】根据为钝角时即可判断A,根据正弦定理结合三角函数的性质即可判断BCD.
【详解】对于A,若为钝角,则,故,A错误,
对于B,由正弦定理可得,
由于是锐角三角形,所以且,故,
故,进而,故B正确,
对于C, ,由于,所以时,取最大值,故最大值为,C正确,
对于D,由正弦定理可得
当时,,故D错误,
故选:BC
11.(23-24高三下·重庆·阶段练习)如图,在海面上有两个观测点在的正北方向,距离为,在某天10:00观察到某航船在处,此时测得分钟后该船行驶至处,此时测得,则( )
A.观测点位于处的北偏东方向
B.当天10:00时,该船到观测点的距离为
C.当船行驶至处时,该船到观测点的距离为
D.该船在由行驶至的这内行驶了
【答案】ACD
【分析】利用方位角的概念判断A,利用正弦定理、余弦定理求解后判断BCD.
【详解】A选项中,,,
因为在D的正北方向,所以位于的北偏东方向,故A正确.
B选项中,在中,,,则,又因为,
所以km,故B错误.
C选项中,在中,由余弦定理,得
,即km,故C正确.
D选项中,在中,,,则.
由正弦定理,得AC=km,故D正确.
故选:ACD.
三、填空题
12.(2024·北京平谷·模拟预测)若的面积为,且为钝角,则 ;的取值范围是 .
【答案】
【分析】由三角形面积公式可得,可求出;再根据为钝角限定出,利用正弦定理可得,可得其范围是.
【详解】根据题意可得面积,
可得,即,
又易知为锐角,可得;
由正弦定理可得,
因为为钝角,可得,所以;
可得,因此;
故答案为:;;
13.(2024·陕西安康·模拟预测)已知抛物线的焦点为,位于第一象限的点在上,为坐标原点,且满足,则外接圆的半径为 .
【答案】
【分析】根据题意得出抛物线的焦点坐标和点,再利用三角形面积公式即可求解.
【详解】由题可得,由,可得点的横坐标为,所以,
所以,
设外接圆的半径为,
则由正弦定理可得,
所以外接圆的半径为.
故答案为:.
14.(2024高三·江苏·专题练习)的内角所对边分别为,点O为的内心,记△OBC,的面积分别为,,,已知,,若为锐角三角形,则 AC的取值范围为 .
【答案】
【分析】首先根据得到,由余弦定理可得,再结合正弦定理以及锐角三角形的条件求AC的取值范围即可.
【详解】设的内切圆半径为r,因为,
所以,化简得:,
所以,因为,所以,所以,
因为,所以,
因为为锐角三角形,
所以,,解得:,
所以,所以AC的取值范围为.
故答案为:
四、解答题
15.(23-24高三下·浙江丽水·开学考试)在凸四边形中,记,四边形的面积为S.已知.
(1)证明:;
(2)设,证明:;
(3)若,求四边形面积的最大值.
【答案】(1)证明见解析
(2)证明见解析
(3)
【分析】(1)设.在和中,利用余弦定理得到求解.
(2)连接,由和的面积分别为,从而求解.
(3)由(2),当时,,即,.其中,.方法一,设,用导数法求解.方法二,利用均值不等式求解.
【详解】(1)解:设.在和中,
由余弦定理得:.
整理得.
因为,所以,
代入上式得.
(2)连接,和的面积分别为.如图示:
因为,所以,
从而.
所以
.
所以,.
(3)由(2),当时,,即,
而.其中,.
方法一:设.
则.
当时,;当时,.
则在单调递增,在单调递减.
所以,所以,等号成立条件是,此时.
综上,四边形面积的最大值是.
方法二:根据均值不等式,
.
等号成立条件是,即,此时.
综上,四边形面积的最大值是.
16.(2024·黑龙江哈尔滨·一模)已知函数.
(1)当时,求函数在上的值域;
(2)在中,内角的对边分别为为的平分线,若的最小正周期是,求的面积.
【答案】(1);
(2).
【分析】(1)根据三角恒等变换将化为一般式,再利用整体法,结合正弦函数单调性,即可求得值域;
(2)根据题意,求得,利用等面积法和余弦定理,求得,再求三角形面积即可.
【详解】(1)
,
当时,,又,故,
又在上单调递增,在单调递减,且,
故函数在上的值域为.
(2)由(1)知,,由其最小正周期为,
可得,又,解得,则;
由,即,又,可得,则,即;
为的平分线,故可得,
则,即,;
在三角形中由余弦定理可得,即,
将代入上式可得:,即,
解得,或(舍去);
故的面积为.
17.(2024·福建厦门·二模)定义:如果三角形的一个内角恰好是另一个内角的两倍,那么这个三角形叫做倍角三角形.如图,的面积为,三个内角所对的边分别为,且.
(1)证明:是倍角三角形;
(2)若,当取最大值时,求.
【答案】(1)证明见解析
(2)
【分析】(1)由三角形面积公式化简条件,结合余弦定理及正弦定理进一步化简即可证明;
(2)由正弦定理结合题中条件得到,结合三角形面积公式化为关于的表达式,构造函数,利用导数求得最大值即可.
【详解】(1)因为,
又,所以,
则,
又由余弦定理知,,
故可得,
由正弦定理,,
又,
代入上式可得,
即,
,
则有,
故是倍角三角形.
(2)因为,所以,
故,则,又,
又,则,
则
,
设,,
则
令得或者(舍),
且当时,,
当时,,
则在上单调递增,
在上单调递减,
故当时,取最大值,
此时也取最大值,
故为所求.
18.(23-24高三下·天津·开学考试)在△中,角A,B,C所对的边分别为a,b,c,若,△的面积为.
(1)求;
(2)若,求;
(3)求的值.
【答案】(1)
(2)
(3)
【分析】(1)利用余弦定理和三角形面积公式求解;
(2)根据和求出,再结合正弦定理即可求解;
(3)利用二倍角公式和两角和的余弦公式求解.
【详解】(1)由余弦定理知:
∵在△中,,∴,即
又∵,∴.即
∴;
(2)由(1)知,则角为锐角,
∵,∴ ,
由正弦定理知:,则,,
∴
又∵,,,
∴;
(3)由(2)知,,
所以,.
所以.
19.(2024高三·江苏·专题练习)中,角 的对边分别为,从下列三个条件中任选一个作为已知条件,并解答问题.①;②;③的面积为,求的取值范围.
【答案】
【分析】选①②时,利用正弦定理边化角,结合三角恒等变换即可求得;选③时,龙三角形面积公式结合余弦定理即可求得;利用三角恒等变换化简为只含有一个角的三角函数的形式,结合正弦函数性质,即可得答案;
【详解】选择①:因为,由正弦定理可得,
所以,
因为,所以,所以 ,即,
因为,所以,所以,
所以,即;
选择②:因为,所以,
由正弦定理得 ,
因为,所以,所以 ,
所以,
因为,所以,所以,即;
选择③:由,
可得 ,即,
所以,由于,故.
显然,不管选择哪个条件,都有,
所以
,
因为,所以,
所以,所以,
即的取值范围为.
相关试卷
这是一份第06讲三角函数的图象与性质(3大考点+强化训练)-冲刺985、211名校高考数学重难点培优全攻略(新高考专用),文件包含第06讲三角函数的图象与性质3大考点+强化训练原卷版docx、第06讲三角函数的图象与性质3大考点+强化训练解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份第05讲 导数的综合应用(3大考点母题突破+强化训练)-冲刺985、211名校高考数学重难点培优全攻略(新高考专用),文件包含第5讲导数的综合应用3大考点母题突破+强化训练原卷版docx、第5讲导数的综合应用3大考点母题突破+强化训练解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
这是一份第04讲 函数的极值、最值(3大考点+强化训练)-冲刺985、211名校高考数学重难点培优全攻略(新高考专用),文件包含第4讲函数的极值最值3大考点+强化训练原卷版docx、第4讲函数的极值最值3大考点+强化训练解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。