初中17.1 勾股定理精品课后复习题
展开TOC \ "1-3" \h \u
\l "_Tc20255" 【题型1 利用勾股定理求线段长】 PAGEREF _Tc20255 \h 1
\l "_Tc27933" 【题型2 利用勾股定理求面积】 PAGEREF _Tc27933 \h 2
\l "_Tc18288" 【题型3 利用勾股定理解决折叠问题】 PAGEREF _Tc18288 \h 3
\l "_Tc18691" 【题型4 利用勾股定理求平面坐标系中两点之间的距离】 PAGEREF _Tc18691 \h 5
\l "_Tc19035" 【题型5 利用勾股定理证明线段的平方关系】 PAGEREF _Tc19035 \h 6
\l "_Tc19725" 【题型6 勾股定理验证方法的应用】 PAGEREF _Tc19725 \h 7
\l "_Tc9716" 【题型7 勾股树问题】 PAGEREF _Tc9716 \h 9
\l "_Tc22711" 【题型8 勾股定理在格点中的应用】 PAGEREF _Tc22711 \h 11
\l "_Tc9912" 【题型9 直角三角形中的分类讨论思想】 PAGEREF _Tc9912 \h 12
\l "_Tc28106" 【题型10 利用勾股定理解决动点问题】 PAGEREF _Tc28106 \h 13
【知识点 勾股定理】
在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角
边长分别是a,b,斜边长为c,那么a2+b2=c2.
【题型1 利用勾股定理求线段长】
【例1】(2023春·浙江·八年级专题练习)如图,小聪用图1中的一副七巧板拼出如图2所示“鸟”,已知正方形ABCD的边长为4,则图2中E,F两点之间的距离为( )
A.26B.213C.10D.16
【变式1-1】(2023春·广东东莞·八年级校考期中)如图,在△ABC中,AB=2,∠B=60°,∠C=45°,求BC和AC的长.
【变式1-2】(2023春·安徽安庆·八年级统考期中)如图,在△ABC中,AB长比AC长大1,BC=15,D是AB上一点,BD=9,CD=12.
(1)求证:CD⊥AB;
(2)求AC长.
【变式1-3】(2023春·辽宁营口·八年级校联考阶段练习)如图OP=1,过P作PP1⊥OP且PP1=1,得OP1=2,再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2;依此法继续作下去,得OP12+OP22+OP32+OP42+…+OP102=__.
【题型2 利用勾股定理求面积】
【例2】(2023春·安徽合肥·八年级校考期中)勾股定理是我国古代的伟大数学发明之一.如图,以Rt△ABC∠ACB=90°的各边向外作正方形,得到三块正方形纸片,再把较小的两张正方形纸片放入最大的正方形中,重叠部分的面积记作S1,左下不重叠部分的面积记作S2,若S1=3,则S2的值是( )
A.1B.1.5C.2D.2.5
【变式2-1】(2023春·北京昌平·八年级校考阶段练习)如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC,灰色部分面积记为S1,黑色部分面积记为S2,白色部分面积记为S3,则( )
A.S1=S2B.S2=S3C.S1=S3D.S1=S2−S3
【变式2-2】(2023春·广东深圳·八年级统考期末)如图,在Rt△ABC中,∠BCA=90°,△PAB中AB边上的高等于AB的长度,△QBC中BC边上的高等于BC的长度,△HAC中AC边上的高等于AC的长度,且△PAB,△QBC的面积分别是10和8,则△ACH的面积是( )
A.2B.4C.6D.9
【变式2-3】(2023春·八年级单元测试)在直线 l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别 为 a,b,c,正放置的四个正方形的面积依次为 S1,S2,S3,S4,则 S1+S2+S3+S4=( )
A.a+bB.b+cC.a+cD.a+b+c
【题型3 利用勾股定理解决折叠问题】
【例3】(2023春·全国·八年级阶段练习)如图,有一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则BD的长为( )
A.5cmB.4cmC.3cmD.2cm
【变式3-1】(2023春·八年级课时练习)已知Rt△ABC中,∠ACB=90°,AC=8,BC=4,D为斜边AB上的中点,E是直角边AC上的一点,连接DE,将△ADE沿DE折叠至△A'DE,A'E交BD于点F,若△DEF的面积是△ADE面积的一半,则DE为( )
A.2B.25C.22D.4
【变式3-2】(2023春·福建厦门·八年级校考阶段练习)如图的实线部分是由 Rt△ABC 经过两次折叠得到的,首先将 Rt△ABC 沿 BD 折叠,使点 C 落在斜边上的点 C' 处,再沿 DE 折叠,使点 A 落在 DC' 的延长线上的点 A' 处.若图中 ∠C=90∘,DE=3cm,BD=4cm,则 DC' 的长为______.
【变式3-3】(2023春·全国·八年级阶段练习)有一块直角三角形纸片,两直角边AC = 6cm,BC = 8cm.
①如图1,现将纸片沿直线AD折叠,使直角边AC落在斜边AB上,则CD =_________cm.
②如图2,若将直角∠C沿MN折叠,点C与AB中点H重合,点M、N分别在AC、BC上,则AM2、BN2与MN2之间有怎样的数量关系?并证明你的结论.
【题型4 利用勾股定理求平面坐标系中两点之间的距离】
【例4】(2023春·全国·八年级专题练习)先阅读一段文字,再回答下列问题,已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为P1P2=(x2−x1)2+(y2−y1)2,同时,当两点所在直线在坐标轴上或平行于x轴或垂直于x轴时,两点间距离公式可化简为|x2−x1|或|y2−y1|.
(1)已知A(3,5),B(−2,−1),则A、B两点间的距离为 ;
(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为−1,则A,B两点间的距离为 ;
(3)已知A,B在平行于x轴的直线上,点A的横坐标为5.且A,B两点间的距离为3,则点B的横坐标为 ;
(4)已知一个三角形各顶点坐标为A(0,6),B(−3,2),C(3,2),请判定此三角形的形状,并说明理由.
【变式4-1】(2023春·全国·八年级专题练习)如图,Rt△AOB的顶点A2,1,B−2,n分别在第一,二象限内,∠AOB=90°,则n的值为( )
A.6B.5C.4D.3
【变式4-2】(2023春·江苏南通·八年级统考期末)平面直角坐标系xOy中,已知点P(m,2n2−4),且实数m,n满足m−n2+4=0,则点P到原点O的距离的最小值为______.
【变式4-3】(2023春·福建龙岩·八年级校考阶段练习)阅读理解:说明代数式x2+1+(x−3)2+4的几何意义,并求它的最小值.
解:x2+1+(x−3)2+4=(x−0)2+1+(x−3)2+22.
几何意义:如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则(x−0)2+12可以看成点P与点A(0,1)的距离,(x−3)2+22可以看成点P与点B(3,2)的距离,所原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
求最小值:设点A关于x轴对称点A′,则PA=PA′.因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′,B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以由勾股定理得A′B=32,即原式的最小值为32.
根据以上阅读材料,解答下列问题:
(1)代数式(x−1)2+1+(x−2)2+9的值可以看成平面直角坐标系中点P(x,0)与点A(1,1),点B__________的距离之和.(填写点B的坐标)
(2)代数式x2+49+x2−12x+37的值可以看成平面直角坐标系中点P(x,0).与点A__________、点B__________的距离之和.(填写点A,B的坐标)
(3)求出代数式x2+49+x2−12x+37的最小值.
【题型5 利用勾股定理证明线段的平方关系】
【例5】(2023春·河北石家庄·八年级石家庄外国语学校校考阶段练习)已知对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.
(1)若AB=5,OA=3,OC=4,则BC=______;
(2)若AD=2,BC=5,则AB2+CD2=______;
(3)若AB=m,BC=n,CD=c,AD=d,则m,n,c,d之间的数量关系是______.
【变式5-1】(2023春·广东云浮·八年级校考期中)在Rt△ABC中,∠A,∠B,∠C的对边分别是a,b,c,若∠A=90°,则( )
A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.a+c=b
【变式5-2】(2023春·八年级课时练习)素有“千古第一定理”之称的勾股定理,它是人类第一次将数与形结合在一起的伟大发现,也是人类最早发现并用于生产、观天、测地的第一个定理,它导致了无理数的发现,引发了第一次数学危机,它使数学由测量计算转变为推理论证.在中国,也被称为“商高定理”,西方则称其为“毕达哥拉斯定理”,几千年来,太多的溢美之词给了这一定理,由于它迷人的魅力,人们冥思苦索给出了数百种证明方法,成为了证明方法最多的定理,其中,利用等面积法证明勾股定理最为常见,现有四名网友为证明勾股定理而提供的图形,其中提供的图形(可以作辅助线)能证明勾股定理的网友是________(填写数字序号即可).
【变式5-3】(2023春·湖北·八年级校考期中)已知如图,在△ABC中,AB=AC,D在CB的延长线上.
求证:(1)AD2−AB2=BD⋅CD;
(2)若D在CB上,结论如何,试证明你的结论.
【题型6 勾股定理验证方法的应用】
【例6】(2023春·山西太原·八年级统考期中)我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦.如图1所示,数学家刘徽(约公元225年—公元295年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理.如图2所示的长方形,是由两个完全相同的“勾股形”拼接而成,若a=3,b=1,则长方形的面积为______.
【变式6-1】(2023春·新疆乌鲁木齐·八年级统考期中)如图,四边形ABCD中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作正方形,面积分别为S1,S2,S3,S4,若S1+S4=135,S3=49,则S2=( )
A.184B.86C.119D.81
【变式6-2】(2023春·北京海淀·八年级北京市十一学校校考期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形(如图1)拼成的一个大正方形(如图2).设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则图2中EF的长为( )
A.3B.4C.22D.32
【变式6-3】(2023春·江苏·八年级专题练习)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成. 将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1,S2,S3. 若S1+S2+S3=18, 则正方形EFGH的面积为_______.
【题型7 勾股树问题】
【例7】(2023春·全国·八年级阶段练习)正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S2,⋯按此规律继续下去,则S2022的值为( )
A.122022B.122021C.222022D.222021
【变式7-1】(2023春·八年级统考期中)图1是第七届国际数学教育大会(ICME)的会徽,主体图案是由如图2的一连串直角三角形演化而成,其中 OA1=A1A2=A2A3=⋅⋅⋅=A8A9=1 ,现把图2中的直角三角形继续作下去如图3所示,若 OA3⋅OAn 的值是整数,且1≤n≤30,则符合条件的n有( )
A.1个B.2个C.3个D.4个
【变式7-2】(2023春·山东菏泽·八年级校考阶段练习)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,如果第一个正方形面积为1,则第2023代勾股树中所有正方形的面积为______.
【变式7-3】(2023春·江西南昌·八年级南昌市第三中学校考期中)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.
(1)①如图2,3,4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,面积分别为S1,S2,S3,利用勾股定理,判断这3个图形中面积关系满足S1+S2=S3的有________个.
②如图5,分别以直角三角形三边为直径作半圆,设图中两个月牙形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,也满足S1+S2=S3吗?若满足,请证明;若不满足,请求出S1,S2,S3的数量关系.
(2)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,则a2+b2+c2+d2=__________.
【题型8 勾股定理在格点中的应用】
【例8】(2023春·江苏盐城·八年级校联考阶段练习)问题背景:
在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积.小明同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上 ;
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为2、13、17,请利用图②的正方形网格(每个小正方形的边长为1)画出相应的△ABC.并求出它的面积.
探索创新:
(3)若△ABC三边的长分别为5a、22a、17a(a>0),请利用图③的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
(4)若△ABC三边的长分别为m2+16n2、9m2+4n2、2m2+n2(m>0,n>0,且m≠n),试运用构图法求出这个三角形的面积.
【变式8-1】(2023春·湖北武汉·八年级统考期中)如图,在4×4正方形网格中,以格点为顶点的△ABC的面积等于3,则点A到边BC的距离为( )
A.B.2C.4D.3
【变式8-2】(2023春·浙江·八年级期末)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为65,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为65时,正方形EFGH的面积的所有可能值是_____(不包括5).
【题型9 直角三角形中的分类讨论思想】
【例9】(2023春·安徽合肥·八年级统考期中)△ABC中,AB=20,AC=13,BC上的高为12,求BC的长.
【变式9-1】(2023春·河南郑州·八年级校考期中)如图,在Rt△ABC中,∠ACB=90°,BC=3,AB=5,点E为射线BC上一点,若△ABE是直角三角形,则△ABE的面积是___________.
【变式9-2】(2023春·四川成都·八年级四川省蒲江县蒲江中学校考期中)在△ABC中,AB=20,AC=13,AD为BC边上的高,且AD=12,△ABC的周长为______.
【变式9-3】(2023·黑龙江哈尔滨·八年级期中)已知在△ABC中,AB=3,AC=1,S△ABC=34,则BC的长是___________.
【题型10 利用勾股定理解决动点问题】
【例10】(2022春·安徽合肥·八年级合肥市第四十二中学校考期中)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,动点P从点B出发,以每秒2个单位长的速度,沿射线BC运动,设运动时间为t秒,请解答以下问题:
(1)BC边的长为________;
(2)当△ABP为直角三角形时,求t的值,写出求解过程;
(3)当△ABP为等腰三角形时,直接写出t的值.
【变式10-1】(2023春·河南信阳·八年级期中)如图,在矩形ABCD中,AB=2,AD=1,E是AB上一个动点,F是AD上一个动点(点F不与点D重合).连接EF把△AEF沿EF折叠,使点A的对应点A'总落在边DC上.若△A'EC是以A'E为腰的等腰三角形,则A'D的长为_____________________.
【变式10-2】(2023春·全国·八年级阶段练习)如图,在四边形ABCD中,∠BAD=∠B=∠D=90°,AD=AB=4,E是AD中点,M是边BC上的一个动点,N是边CD上的一个动点,则AM+MN+EN的最小值是______.
【变式10-3】(2023·河南驻马店·八年级驻马店市第二初级中学校考期中)如图,在平面直角坐标系 xOy 中,点 A,B 的坐标分别为 A(0,2),B(8,8),点 C(m,0)为 x 正半轴 上一个动点.
(1)当 m=4 时,写出线段 AC= ,BC= .
(2)当 0<m<8 时,求△ABC 的面积.(用含 m 的代数式表示)
(3)当点 C 在运动时,是否存在点 C 使△ABC 为直角三角形,如果存在,请求出这个三角形的面积;如果不存在, 请说明理由.
人教版八年级下册17.1 勾股定理课时作业: 这是一份人教版八年级下册<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">17.1 勾股定理课时作业</a>,共57页。
初中数学人教版八年级下册17.1 勾股定理精品课时训练: 这是一份初中数学人教版八年级下册<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">17.1 勾股定理精品课时训练</a>,文件包含专题175勾股定理章末拔尖卷人教版原卷版docx、专题175勾股定理章末拔尖卷人教版解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
人教版八年级下册第十七章 勾股定理17.1 勾股定理精品课后作业题: 这是一份人教版八年级下册<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">第十七章 勾股定理17.1 勾股定理精品课后作业题</a>,文件包含专题171勾股定理十大题型举一反三人教版原卷版docx、专题171勾股定理十大题型举一反三人教版解析版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。