强化训练湖南省新化县中考数学模拟考试 A卷(含答案详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,下列条件中不能判定的是( )
A.B.C.D.
2、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
A.2个B.3个C.4个D.5个
3、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
A.B.C.D.
4、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
A.B.C.D.
5、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
6、如图,AD为的直径,,,则AC的长度为( )
A.B.C.4D.
7、如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2),再分别连接图(2)中间的小三角形三边中点得到图(3),按这种方法继续下去,第6个图形有( )个三角形.
A.20B.21C.22D.23
8、有理数,在数轴上对应点如图所示,则下面式子中正确的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
9、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
A.10B.11C.12D.13
10、不等式的最小整数解是( )
A.B.3C.4D.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º.
2、为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:
则这组数据的众数是______;平均数是______.
3、如图,在平面直角坐标系xOy中,P为函数图象上一点,过点P分别作x轴、y轴的垂线,垂足分别为M,N.若矩形PMON的面积为3,则m的值为______.
4、如图,一架梯子AB斜靠在左墙时,梯子顶端B距地面2.4m,保持梯子底端A不动,将梯子斜靠在右墙时,梯子顶端C距地面2m,梯子底端A到右墙角E的距离比到左墙角D的距离多0.8m,则梯子的长度为_____m.
5、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
三、解答题(5小题,每小题10分,共计50分)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、已知一次函数y=-3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).
(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.求点E的坐标;
(2)△AOB与△FOD是否全等,请说明理由;
(3)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.
2、如图1,在平而直角坐标系中,抛物线(、、为常数,)的图像与轴交于点、两点,与轴交于点,且抛物线的对称轴为直线.
(1)求抛物线的解析式;
(2)在直线上方的抛物线上有一动点,过点作轴,垂足为点,交直线于点;是否存在点,使得取得最大值,若存在请求出它的最大值及点的坐标;若不存在,请说明理由;
(3)如图2,若点是抛物线上另一动点,且满足,请直接写出点的坐标.
3、如图,一次函数的图象与反比例函数的图象相交于和两点.
(1)______,_______;
(2)结合图象直接写出不等式的解集.
4、已知:如图,点A,F,C,D在同一条直线上,点B和点E在直线AD的两侧,且AF=DC,BC∥FE,∠A=∠D.求证:AB=DE.
5、如图,等腰直角△ABC中,∠BAC=90°,在BC上取一点D,使得CD=AB,作∠ABC的角平分线交AD于E,请先按要求继续完成图形:以A为直角顶点,在AE右侧以AE为腰作等腰直角△AEF,其中∠EAF=90°.再解决以下问题:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)求证:B,E,F三点共线;
(2)连接CE,请问△ACE的面积和△ABF的面积有怎样的数量关系,并说明理由.
-参考答案-
一、单选题
1、A
【分析】
根据平行线的判定逐个判断即可.
【详解】
解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
∴∠3=∠5,
因为”同旁内角互补,两直线平行“,
所以本选项不能判断AB∥CD;
B、∵∠3=∠4,
∴AB∥CD,
故本选项能判定AB∥CD;
C、∵,
∴AB∥CD,
故本选项能判定AB∥CD;
D、∵∠1=∠5,
∴AB∥CD,
故本选项能判定AB∥CD;
故选:A.
【点睛】
本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
2、C
【分析】
设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
【详解】
解:设原两位数的个位为 十位为 则这个两位数为
交换其个位数与十位数的位置,所得新两位数为 则
整理得:
为正整数,且
或或或
所以这个两位数为:
故选C
【点睛】
本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
3、C
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:12000
故选C
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
4、B
【分析】
根据题意可知,中午的气温是,然后计算即可.
【详解】
解:由题意可得,
中午的气温是:°C,
故选:.
【点睛】
本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
5、B
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
6、A
【分析】
连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出.
【详解】
解:连接CD
∵
∴AC=DC
又∵AD为的直径
∴∠ACD=90°
∴
∴
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:A.
【点睛】
本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.
7、B
【分析】
由第一个图中1个三角形,第二个图中5个三角形,第三个图中9个三角形,每次递增4个,即可得出第n个图形中有(4n-3)个三角形.
【详解】
解:由图知,第一个图中1个三角形,即(4×1-3)个;
第二个图中5个三角形,即(4×2-3)个;
第三个图中9个三角形,即(4×3-3)个;
…
∴第n个图形中有(4n-3)个三角形.
∴第6个图形中有个三角形
故选B
【点睛】
本题考查了图形变化的一般规律问题.能够通过观察,掌握其内在规律是解题的关键.
8、C
【分析】
先根据数轴可得,再根据有理数的加减法与乘法法则逐项判断即可得.
【详解】
解:由数轴得:.
A、,此项错误;
B、由得:,所以,此项错误;
C、,此项正确;
D、,此项错误;
故选:C.
【点睛】
本题考查了数轴、绝对值、有理数的加减法与乘法,熟练掌握数轴的性质是解题关键.
9、A
【分析】
作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
【详解】
解:如图,作正多边形的外接圆,连接AO,BO,
∴∠AOB=2∠ADB=36°,
∴这个正多边形的边数为=10.
故选:A.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
10、C
【分析】
先求出不等式解集,即可求解.
【详解】
解:
解得:
所以不等式的最小整数解是4.
故选:C.
【点睛】
本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.
二、填空题
1、70
【解析】
【分析】
如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.
【详解】
解:如图,由三角形的内角和定理得:,
图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,
,
故答案为:70.
【点睛】
本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.
2、 141 143
【解析】
【分析】
根据平均数,众数的性质分别计算出结果即可.
【详解】
解:根据题目给出的数据,可得:
平均数为:=143;
141出现了5次,出现次数最多,则众数是:141;
故答案为:141;143.
【点睛】
本题考查的是平均数,众数,熟悉相关的计算方法是解题的关键.
3、3
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
根据反比例函数的解析式是,设点,根据已知得出,即,求出即可.
【详解】
解:设反比例函数的解析式是,
设点是反比例函数图象上一点,
矩形的面积为3,
,
即,
故答案为:3.
【点睛】
本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力.
4、##
【解析】
【分析】
设,则 结合再利用勾股定理建立方程再解方程求解 再利用勾股定理求解梯子的长即可.
【详解】
解:设,则 而
由勾股定理可得:
整理得:
解得:
所以梯子的长度为m.
故答案为:
【点睛】
本题考查的是勾股定理的应用,熟练的利用勾股定理建立方程是解本题的关键.
5、49
【解析】
【分析】
延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.
【详解】
如图,延长FE交AB于点M,则,,
∵四边形ABCD是正方形,
∴,
∴是等腰直角三角形,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在中,,
∴,
∴.
故答案为:49.
【点睛】
本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.
三、解答题
1、
(1)E(,)
(2)△AOB≌△FOD,理由见详解;
(3)P(0,-3)或(4,1)或(,).
【分析】
(1)连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,首先求出点A,点B,点C,点D的坐标,然后根据点E到两坐标轴的距离相等,得到OE平分∠BOC,进而求出点E的坐标即可;
(2)首先求出直线DE的解析式,得到点F的坐标,即可证明△AOB≌△FOD;
(3)首先求出直线GC的解析式,求出AB的长,设P(m,m-3),分类讨论①当AB=AP时,②当AB=BP时,③当AP=BP时,分别求出m的值即可解答.
(1)
解: 连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,
当y=0时,-3x+3=0,
解得x=1,
∴A(1,0),
当x=0时,y=3,
∴OB=3,B(0,3),
∵点D与点C关于y轴对称,C(3,0),OC=3,
∴D(-3,0),
∵点E到两坐标轴的距离相等,
∴EG=EH,
∵EH⊥OC,EG⊥OC,
∴OE平分∠BOC,
∵OB=OC=3,
∴CE=BE,
∴E为BC的中点,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴E(,);
(2)
解: △AOB≌△FOD,
设直线DE表达式为y=kx+b,
则,
解得:,
∴y=x+1,
∵F是直线DE与y轴的交点,
∴F(0,1),
∴OF=OA=1,
∵OB=OD=3,∠AOB=∠FOD=90°,
∴△AOB≌△FOD;
(3)
解:∵点G与点B关于x轴对称,B(0,3),
∴点G(0,-3),
∵C(3,0),
设直线GC的解析式为:y=ax+c,
,
解得:,
∴y=x-3,
AB== ,
设P(m,m-3),
①当AB=AP时,
=
整理得:m2-4m=0,
解得:m1=0,m2=4,
∴P(0,-3)或(4,1),
②当AB=BP时,=
m2-6m+13=0,
△<0
故不存在,
③当AP=BP时,
=,
解得:m=,
∴P(, ),
综上所述P(0,-3)或(4,1)或(,),
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此题主要考查待定系数法求一次函数,一次函数与坐标轴的交点,全等三角形的判定,勾股定理.
2、
(1)
(2);
(3)
【分析】
(1)待定系数法求解析式即可;
(2)过点作于点,求得,直线的解析式为,设,点在直线上,则,进而求得,根据二次函数的性质求得最值以及的值,进而求得的坐标;
(3)取点,连接,则,进而证明,根据的解析式求得的解析式,进而联立抛物线解析式即可求得点的坐标.
(1)
解:抛物线的对称轴为直线,与轴交于点、两点,与轴交于点,
设抛物线的解析式为,将点代入得
解得
抛物线的解析式为
即
(2)
解:如图,过点作于点,
设直线的解析式为,将点,
代入得:
解得
直线的解析式为
,
是等腰直角三角形
轴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
轴
在中,
在直线上方的抛物线上有一动点,设
点在直线上,则
,
即当时,的最大值为:
此时
即
(3)
如图,取点,连接,则,
又
设直线的解析式为
则
解得
直线的解析式为
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
设直线的解析式为,过点
解得
直线的解析式为
是抛物线上的一点,则为直线与抛物线的交点,则
解得,
【点睛】
本题考查了二次函数综合,一次函数的平移问题,二次函数最值问题,掌握二次函数的图象的性质是解题的关键.
3、
(1),
(2)或
【分析】
(1)把A(-1,m),B(n,-1)分别代入反比例函数解析式可求出m、n;
(2)确定A点坐标为(-1,2),B点坐标为(2,-1),然后根据图象即可求得.
(1)
把A(-1,m),B(n,-1)分别代入得-m=-2,-n=-2,
解得m=2,n=2,
故答案为:2,2
(2)
∵m=2,n=2,
∴A点坐标为(-1,2),B点坐标为(2,-1),
根据图象可得,不等式的解集为或.
【点睛】
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.
4、见解析
【分析】
证明△ABC≌△DEF即可.
【详解】
∵BC∥FE,
∴∠1 =∠2
∵AF=DC,
∴AF+FC=DC+CF.
∴AC=DF.
在△ABC和△DEF中,
∴△ABC≌△DEF(ASA) .
∴AB=DE.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了平行线的性质、三角形全等的判定与性质,关键是证明三角形全等.
5、
(1)见解析
(2)△ACE的面积和△ABF的面积相等.理由见解析
【分析】
(1)利用等腰直角三角形的性质得到∠CAD=∠CDA=67.5°,利用角平分线的性质得到∠ABE=∠DBE=22.5°,∠BEA=135°,即可推出∠BEA+∠AEF=180°;
(2)证明Rt△AEG≌Rt△AFH,利用全等三角形的性质得到EG= FH,则△ACE和△ABF等底等高,即可证明结论.
(1)
证明:∵等腰直角△ABC中,∠BAC=90°,
∴∠ABC=∠C=45°,AB=AC,
∵CD=AB,则CD=AC,
∴∠CAD=∠CDA==67.5°,
∴∠BAE=90°-∠CAD=22.5°,
∵AD平分∠ABC,
∴∠ABE=∠DBE=22.5°,
∴∠BEA=180°-∠ABE-∠BAE=135°,
∵△AEF是等腰直角三角形,且∠EAF=90°,
∴∠AEF=∠F=45°,
∴∠BEA+∠AEF=180°,
∴B,E,F三点共线;
(2)
解:△ACE的面积和△ABF的面积相等.理由如下:
过点E作EG⊥AC于点G,过点F作FH⊥BA交BA延长线于点H,
∵∠HAF=180°-∠BAE-∠EAF=180°-22.5°-90°=67.5°,∠CAE=67.5°,
∴∠HAF=∠CAE,
∵△AEF是等腰直角三角形,
∴AE=AF,
∴Rt△AEG≌Rt△AFH,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴EG= FH,
∵AB=AC,
∴△ACE和△ABF等底等高,
∴△ACE的面积和△ABF的面积相等.
【点睛】
本题考查了等腰直角三角形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
一分钟跳绳个数(个)
141
144
145
146
学生人数(名)
5
2
1
2
中考强化训练湖南省新化县中考数学三模试题(含答案详解): 这是一份中考强化训练湖南省新化县中考数学三模试题(含答案详解),共20页。试卷主要包含了单项式的次数是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
中考强化训练湖南省新化县中考数学模拟考试 A卷(含答案解析): 这是一份中考强化训练湖南省新化县中考数学模拟考试 A卷(含答案解析),共22页。试卷主要包含了下列现象,如图,在中,,,,则的度数为,代数式的意义是,下列方程变形不正确的是等内容,欢迎下载使用。
【中考特训】湖南省新化县中考数学模拟考试 A卷(含答案详解): 这是一份【中考特训】湖南省新化县中考数学模拟考试 A卷(含答案详解),共33页。试卷主要包含了生活中常见的探照灯,一元二次方程的根为.,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。