强化训练湖南省中考数学模拟定向训练 B卷(含答案详解)
展开
这是一份强化训练湖南省中考数学模拟定向训练 B卷(含答案详解),共21页。试卷主要包含了有理数 m,如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°
A.B.C.D.
2、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
A.两人前行过程中的速度为180米/分B.的值是15,的值是2700
C.爸爸返回时的速度为90米/分D.运动18分钟或31分钟时,两人相距810米
3、下列方程中,解为的方程是( )
A.B.C.D.
4、有理数 m、n 在数轴上的位置如图,则(m+n)(m+2n)(m﹣n)的结果的为( )
A.大于 0B.小于 0C.等于 0D.不确定
5、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).
A.28B.54C.65D.75
6、一枚质地均匀的骰子六个面上分别刻有1到6的点数,掷一次骰子,下列事件中是随机事件的是( )
A.向上的点数大于0B.向上的点数是7
C.向上的点数是4D.向上的点数小于7
7、下列图形中,能用,,三种方法表示同一个角的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.
C.D.
8、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
A.75°B.70°C.65°D.55°
9、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
A.30km/hB.60km/hC.70km/hD.90km/h
10、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个B.3 个C.4 个D.5 个.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,平分,,,则__.
2、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.
3、如图,围棋盘的方格内,白棋②的位置是,白棋④的位置是,那么黑棋①的位置应该表示为______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、如图,正方形 边长为 ,则 _____________
5、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:),那么最大温差是________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,一次函数的图象与反比例函数的图象相交于和两点.
(1)______,_______;
(2)结合图象直接写出不等式的解集.
2、现有面值为5元和2元的人民币共32张,币值共计100元,问:这两种人民币各有多少张?
3、先把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来.
﹣2,-(﹣4),0,+(﹣1),1,﹣|﹣3|
4、(1)计算:;
(2)已知二次函数,当时,,当时,.求该二次函数的解析式.
5、已知:在△ABC中,AB=AC,直线l过点A .
(1)如图1,∠BAC=90°,分别过点B,C作直线l的垂线段BD,CE,垂足分别为D,E.
①依题意补全图1;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
②用等式表示线段DE,BD,CE之间的数量关系,并证明;
(2)如图2,当∠BAC≠90°时,设∠BAC=α(0°< α <180°),作∠CEA=∠BDA=α,点D,E在直线l上,直接用等式表示线段DE,BD,CE之间的数量关系为 .
-参考答案-
一、单选题
1、C
【分析】
根据平行线的性质可得,进而根据即可求解
【详解】
解:
故选C
【点睛】
本题考查了平行线的性质,掌握平行线的性质是解题的关键.
2、D
【分析】
两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
【详解】
解:∵3600÷20=180米/分,
∴两人同行过程中的速度为180米/分,故A选项不符合题意;
∵东东在爸爸返回5分钟后返回即第20分钟返回
∴m=20-5=15,
∴n=180×15=2700,故B选项不符合题意;
∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
∴运动18分钟时两人相距3240-2430=810米;
∵返程过程中东东45-20=25分钟走了3600米,
∴东东返程速度=3600÷25=144米/分,
∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
∴运动31分钟两人相距756米,故D选项符合题意;
故选D.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
3、D
【分析】
求出选项各方程的解即可.
【详解】
A、,解得:,不符合题意.
B、,解得:,不符合题意.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C、,解得:,不符合题意.
D、,解得:,符合题意.
故选:D .
【点睛】
此题考查的知识点是一元一次方程的解,关键是分别求出各方程的解.
4、A
【分析】
从数轴上看出,判断出,进而判断的正负.
【详解】
解:由题意知:
∴
∴
故选A.
【点睛】
本题考查了有理数加减的代数式正负的判断.解题的关键在于正确判断各代数式的正负.
5、B
【分析】
一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可
【详解】
设中间的数是x,则上面的数是x-7,下面的数是x+7,
则这三个数的和是(x-7)+x+(x+7)=3x,
∴3x=28,
解得:不是整数,
故选项A不是;
∴3x=54,
解得: ,
中间的数是18,则上面的数是11,下面的数是28,
故选项B是;
∴3x=65,
解得: 不是整数,
故选项C不是;
∴3x=75,
解得:,
中间的数是25,则上面的数是18,下面的数是32,
日历中没有32,
故选项D不是;
所以这三个数的和可能为54,
故选B.
【点睛】
本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
6、C
【分析】
根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.
【详解】
解:A. 向上的点数大于0,是必然事件,故此选项不符合题意;
B. 向上的点数是7,是不可能事件,故此选项不符合题意;
C. 向上的点数是4,是随机事件,故此选项符合题意;
D. 向上的点数小于7,是必然事件,故此选项不符合题意
故选C
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
8、B
【分析】
直接根据圆周角定理求解.
【详解】
解:,
.
故选:B.
【点睛】
本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
9、B
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
10、C
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
二、填空题
1、##BC//DE
【解析】
【分析】
由平分,可得,再根据同旁内角互补两直线平行可得结论.
【详解】
解:平分,,
∴=2=110°,
,
∴∠C+∠CDE=70°+110°=180°,
.
故答案为:.
【点睛】
本题考查了角的平分线的性质,平行线的判定,熟练的掌握平行线的判定方法是解题关键.
2、五
【解析】
【分析】
根据过多边形的一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,计算可求解.
【详解】
解:设这是个n边形,由题意得
n-2=3,
∴n=5,
故答案为:五.
【点睛】
本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.
3、
【解析】
【分析】
先根据白棋②的位置是,白棋④的位置是确定坐标系,然后再确定黑棋①的坐标即可.
【详解】
根据图形可以知道,黑棋①的位置应该表示为
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:
【点睛】
此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.
4、##
【解析】
【分析】
根据正方形的性质可得,过E作EG⊥BC于G,证明三角形EGC是等腰直角三角形,再根据直角三角形BEG利用勾股定理列方程即可.
【详解】
过E作EG⊥BC于G
∵正方形 边长为2
∴,
∵
∴
∴三角形EGC是等腰直角三角形
∴,
在Rt△BEG中,
∴
解得:
∴
∴
【点睛】
本题考查正方形的性质及勾股定理,解题的关键是证明三角形EGC是等腰直角三角形,最终根据勾股定理列方程计算即可.
5、15
【解析】
【分析】
通过表格即可求得最高和最低气温,12月3日的温差最大,最大温差为10-(-5)=15℃;
【详解】
解:12月1日的温差:
12月2日的温差:
12月3日的温差:
12月4日的温差:
12月5日的温差:
,
最大温差是15,
故答案为:15.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此题考查了正数与负数以及有理数的减法,熟练掌握运算法则是解本题的关键.
三、解答题
1、
(1),
(2)或
【分析】
(1)把A(-1,m),B(n,-1)分别代入反比例函数解析式可求出m、n;
(2)确定A点坐标为(-1,2),B点坐标为(2,-1),然后根据图象即可求得.
(1)
把A(-1,m),B(n,-1)分别代入得-m=-2,-n=-2,
解得m=2,n=2,
故答案为:2,2
(2)
∵m=2,n=2,
∴A点坐标为(-1,2),B点坐标为(2,-1),
根据图象可得,不等式的解集为或.
【点睛】
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.
2、面值为5元得人民币由12张,面值为2元得人民币由20张.
【分析】
设面值为5元得人民币由张,面值为2元得人民币由张,然后由面值共100元,列出方程,解方程即可.
【详解】
解答:解:设面值为5元得人民币由张,面值为2元得人民币由张,
根据题意得:,
解得:(张,
(张.
答:面值为5元得人民币由12张,面值为2元得人民币由20张.
【点睛】
此题属于一元一次方程的应用题,关键是由题意列出方程.
3、数轴见解析,-|-3|<-2<+(-1)<0<1<-(-4)
【分析】
先根据相反数,绝对值进行计算,再在数轴上表示出各个数,再比较大小即可.
【详解】
解:-(-4)=4,+(-1)=-1,-|-3|=-3,
-|-3|<-2<+(-1)<0<1<-(-4).
【点睛】
本题考查了数轴,有理数的大小比较,绝对值和相反数等知识点,能正确在数轴上表示出各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.
4、(1);(2)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
(2)分别把各特殊角的三角函数值代入进行计算即可;
(2)把x,y的值分别代入得关于a,b为未知数的方程组,求解方程组即可.
【详解】
解:(1)
;
(2)把,,,分别代入得
,
解得,
∴.
【点睛】
本题主要考查了特殊角三角函数的混合运算以及运用待定系数法示二次函数解析式,熟练掌握相关知识是解答本题的关键.
5、
(1)①见详解;②结论为DE=BD+CE,证明见详解;
(2)DE=BD+CE.证明见详解.
【分析】
(1)①依题意在图1作出CE、BD ,标出直角符号,垂足即可;
②结论为DE=BD+CE,先证∠ECA=∠BAD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD,即可;
(2)DE=BD+CE.根据∠BAC=α(0°< α <180°)=∠CEA=∠BDA=α,得出∠CAE=∠ABD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD即可.
(1)
解:①依题意补全图1如图;
②结论为DE=BD+CE,
证明:∵CE⊥l,BD⊥l,
∴∠CEA=∠BDA=90°,
∴∠ECA+∠CAE=90°,
∵∠BAC=90°,
∴∠CAE+∠BAD=90°
∴∠ECA=∠BAD,
在△ECA和△DAB中,
,
∴△ECA≌△DAB(AAS),
∴EA=BD,CE=AD,
∴ED=EA+AD=BD+CE;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
DE=BD+CE.
证明:∵∠BAC=α(0°< α <180°)=∠CEA=∠BDA=α,
∴∠CAE+∠BAD=180°-α,∠BAD+∠ABD=180°-α,
∴∠CAE=∠ABD,
在△ECA和△DAB中,
,
∴△ECA≌△DAB(AAS),
∴EA=BD,CE=AD,
∴ED=EA+AD=BD+CE;
故答案为:ED= BD+CE.
【点睛】
本题考查一线三等角,三角形内角和,平角,三角形全等判定与性质,掌握一线三等角特征,三角形内角和,平角,三角形全等判定方法与性质是解题关键.
相关试卷
这是一份模拟测评湖南省中考数学模拟定向训练 B卷(含详解),共29页。试卷主要包含了如图,有三块菜地△ACD,下列各式中,不是代数式的是,一元二次方程的根为等内容,欢迎下载使用。
这是一份中考强化训练湖南省怀化市中考数学模拟定向训练 B卷,共32页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。
这是一份【中考专题】湖南省衡阳市中考数学模拟定向训练 B卷(含答案详解),共24页。试卷主要包含了单项式的次数是,下列各式中,不是代数式的是等内容,欢迎下载使用。