开学活动
搜索
    上传资料 赚现金

    模拟测评湖南省株洲市中考数学三年高频模拟汇总卷(精选)

    模拟测评湖南省株洲市中考数学三年高频模拟汇总卷(精选)第1页
    模拟测评湖南省株洲市中考数学三年高频模拟汇总卷(精选)第2页
    模拟测评湖南省株洲市中考数学三年高频模拟汇总卷(精选)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟测评湖南省株洲市中考数学三年高频模拟汇总卷(精选)

    展开

    这是一份模拟测评湖南省株洲市中考数学三年高频模拟汇总卷(精选),共28页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
    A.B.C.D.
    2、如图,O是直线AB上一点,则图中互为补角的角共有( )
    A.1对B.2对C.3对D.4对
    3、下列式子中,与是同类项的是( )
    A.abB.C.D.
    4、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为( ).
    A.B.C.D.
    5、用符号表示关于自然数x的代数式,我们规定:当x为偶数时,;当x为奇数时,.例如:,.设,,,…,.以此规律,得到一列数,,,…,,则这2022个数之和等于( )
    A.3631B.4719C.4723D.4725
    6、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )
    A.冬B.奥C.运D.会
    7、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.28B.54C.65D.75
    8、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
    A.2个B.3个C.4个D.5个
    9、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
    A.1B.2020C.2021D.2022
    10、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在日常生活和生产中有很多现象可以用数学知识进行解释.如图,要把一根挂衣帽的挂钩架水平固定在墙上,至少需要钉______个钉子.用你所学数学知识说明其中的道理______.
    2、如图,在矩形ABCD中,cm,cm.动点P、Q分别从点A、C以1cm/s的速度同时出发.动点P沿AB向终点B运动,动点Q沿CD向终点D运动,连结PQ交对角线AC于点O.设点P的运动时间为.
    (1)当四边形APQD是矩形时,t的值为______.
    (2)当四边形APCQ是菱形时,t的值为______.
    (3)当是等腰三角形时,t的值为______.
    3、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:),那么最大温差是________.
    4、若反比例函数的图象位于第一、第三象限,则的取值范围是_______.
    5、如图,均是由若干个的基础图形组成的有规律的图案,第①个图案由4个基础图形组成,第②个图案由7个基础图形组成,…,按此规律排列下去,第④个图案中的基础图形个数为______,用式子表示第n个图案中的基础图形个数为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知关于x的一元二次方程x2−(2m−2)x+(m2−2m)=0.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)请说明该方程实数根的个数情况;
    (2)如果方程的两个实数根为x1,x2,且(x1+1)⋅(x2+1)=8,求m的值.
    2、已知:如图,在中,,,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足.求证:
    (1);
    (2)过点C作,交BE于点G,交AB于点M,求证:.
    3、如图,在平面直角坐标系中,在第二象限,且,,.
    (1)作出关于轴对称的,并写出,的坐标;
    (2)在轴上求作一点,使得最小,并求出最小值及点坐标.
    4、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.
    (1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
    (2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
    (3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
    5、在数轴上,点A,B分别表示数a,b,且,记.
    (1)求AB的值;
    (2)如图,点P,Q分别从点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒.
    ①请用含t的式子分别写出点P、点Q、点C所表示的数;
    ②当t的值是多少时,点C到点P,Q的距离相等?
    -参考答案-
    一、单选题
    1、A
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点,则PA=,
    ∴≤(当P、、B共线时取等号),
    连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
    设直线的函数表达式为y=kx+b,
    将(1,-1)、B(2,-3)代入,得:
    ,解得:,
    ∴y=-2x+1,
    当y=0时,由0=-2x+1得:x=,
    ∴点P坐标为(,0),
    故选:A
    【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
    2、B
    【分析】
    根据补角定义解答.
    【详解】
    解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
    故选:B.
    【点睛】
    此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
    3、D
    【分析】
    根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.
    【详解】
    解:A、ab与ab2不是同类项,不符合题意;
    B、a2b与ab2不是同类项,不符合题意;
    C、ab2c与ab2不是同类项,不符合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    D、-2ab2与ab2是同类项,符合题意;
    故选:D.
    【点睛】
    本题考查同类项,理解同类项的概念是解答的关键.
    4、C
    【分析】
    根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    【详解】
    解:∵袋子中共有6个小球,其中白球有3个,
    ∴摸出一个球是白球的概率是.
    故选:C.
    【点睛】
    本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    5、D
    【分析】
    根据题意分别求出x2=4,x3=2,x4=1,x5=4,…,由此可得从x2开始,每三个数循环一次,进而继续求解即可.
    【详解】
    解:∵x1=8,
    ∴x2=f(8)=4,
    x3=f(4)=2,
    x4=f(2)=1,
    x5=f(1)=4,
    …,
    从x2开始,每三个数循环一次,
    ∴(2022-1)÷3=6732,
    ∵x2+x3+x4=7,
    ∴=8+673×7+4+2=4725.
    故选:D.
    【点睛】
    本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键.
    6、D
    【分析】
    正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
    【详解】
    解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
    “京”与“奥”是相对面,
    “冬”与“运”是相对面,
    “北”与“会”是相对面.
    故选:D.
    【点睛】
    本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    7、B
    【分析】
    一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可
    【详解】
    设中间的数是x,则上面的数是x-7,下面的数是x+7,
    则这三个数的和是(x-7)+x+(x+7)=3x,
    ∴3x=28,
    解得:不是整数,
    故选项A不是;
    ∴3x=54,
    解得: ,
    中间的数是18,则上面的数是11,下面的数是28,
    故选项B是;
    ∴3x=65,
    解得: 不是整数,
    故选项C不是;
    ∴3x=75,
    解得:,
    中间的数是25,则上面的数是18,下面的数是32,
    日历中没有32,
    故选项D不是;
    所以这三个数的和可能为54,
    故选B.
    【点睛】
    本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.
    8、C
    【分析】
    设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
    【详解】
    解:设原两位数的个位为 十位为 则这个两位数为
    交换其个位数与十位数的位置,所得新两位数为 则

    整理得:
    为正整数,且
    或或或
    所以这个两位数为:
    故选C
    【点睛】
    本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
    9、D
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
    【详解】
    解:如图,
    由题意得:SA=1,
    由勾股定理得:SB+SC=1,
    则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
    同理可得:
    “生长”了2次后形成的图形中所有的正方形面积和为3,
    “生长”了3次后形成的图形中所有正方形的面积和为4,
    ……
    “生长”了2021次后形成的图形中所有的正方形的面积和是2022,
    故选:D
    【点睛】
    本题考查了勾股数规律问题,找到规律是解题的关键.
    10、B
    【分析】
    根据题意可知,中午的气温是,然后计算即可.
    【详解】
    解:由题意可得,
    中午的气温是:°C,
    故选:.
    【点睛】
    本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
    二、填空题
    1、 2 两点确定一条直线
    【解析】
    【分析】
    根据两点确定一条直线解答.
    【详解】
    解:至少需要钉2个钉子,所学的数学知识为:两点确定一条直线,
    故答案为:2,两点确定一条直线.
    【点睛】
    此题考查了线段的性质:两点确定一条直线,熟记性质是解题的关键.
    2、 4 或5或4
    【解析】
    【分析】
    (1)根据矩形的性质得到CD=cm,,求出DQ=(8-t)cm,由四边形APQD是矩形时,· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    得到t=8-t,求出t值;
    (2)连接PC,求出AP=PC=tcm,PB=(8-t)cm,由勾股定理得,即,求解即可;
    (3)由勾股定理求出AC=10cm,证明△OAP≌△OCQ,得到OA=OC=5cm,分三种情况:当AP=OP时,过点P作PN⊥AO于N,证明△NAP∽△BAC,得到,求出t=;当AP=AO=5cm时,t=5;当OP=AO=5cm时,过点O作OG⊥AB于G,证明△OAG∽△CAB,得到,代入数值求出t.
    【详解】
    解:(1)由题意得AP=CQ=t,
    ∵在矩形ABCD中,cm,cm.
    ∴CD=cm,,
    ∴DQ=(8-t)cm,
    当四边形APQD是矩形时,AP=DQ,
    ∴t=8-t,
    解得t=4,
    故答案为:4;
    (2)连接PC,
    ∵四边形APCQ是菱形,
    ∴AP=PC=tcm,PB=(8-t)cm,
    ∵在矩形ABCD中,∠B=90°,
    ∴,
    ∴,
    解得,
    故答案为:;
    (3)∵∠B=90°,cm,cm.
    ∴AC=10cm,
    ∵,
    ∴∠OAP=∠OCQ,∠OPA=∠OQC,
    ∴△OAP≌△OCQ,
    ∴OA=OC=5cm,
    分三种情况:
    当AP=OP时,过点P作PN⊥AO于N,则AN=ON=2.5cm,
    ∵∠NAP=∠BAC,∠ANP=∠B,
    ∴△NAP∽△BAC,
    ∴,
    ∴,
    解得t=;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    当AP=AO=5cm时,t=5;
    当OP=AO=5cm时,过点O作OG⊥AB于G,则,
    ∵∠OAG=∠BAC,∠OGA=∠B,
    ∴△OAG∽△CAB,
    ∴,
    ∴,
    解得t=4,
    故答案为:或5或4.
    【点睛】
    此题考查了矩形的性质,菱形的性质,等腰三角形的性质,勾股定理,相似三角形的判定及性质,熟记各知识点并应用解决问题是解题的关键.
    3、15
    【解析】
    【分析】
    通过表格即可求得最高和最低气温,12月3日的温差最大,最大温差为10-(-5)=15℃;
    【详解】
    解:12月1日的温差:
    12月2日的温差:
    12月3日的温差:
    12月4日的温差:
    12月5日的温差:

    最大温差是15,
    故答案为:15.
    【点睛】
    此题考查了正数与负数以及有理数的减法,熟练掌握运算法则是解本题的关键.
    4、
    【解析】
    【分析】
    根据反比例函数的性质解答.
    【详解】
    解:∵反比例函数的图象位于第一、第三象限,
    ∴k-1>0,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴,
    故答案为:.
    【点睛】
    此题考查了反比例函数的性质:当k>0时,函数图象的两个分支分别在第一、三象限内;当k0,则可得点E的坐标为(a,-2)
    ∴EG=a


    在Rt△中,由勾股定理得:
    解得:
    当时,
    所以点P的坐标为
    (3)
    分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长
    ∵A,B两点的坐标分别为(-2,-6),(4,6)
    ∴CM=4-(-2)=6
    则点运动路径的长为6
    故答案为:6
    【点睛】
    本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.
    5、
    (1)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)①点所表示的数为,点所表示的数为,点所表示的数为;②或
    【分析】
    (1)先根据绝对值的非负性求出的值,再代入计算即可得;
    (2)①根据“路程=速度时间”、结合数轴的性质即可得;
    ②根据建立方程,解方程即可得.
    (1)
    解:,

    解得,

    (2)
    解:①由题意,点所表示的数为,
    点所表示的数为,
    点所表示的数为;
    ②,,
    由得:,
    即或,
    解得或,
    故当或时,点到点的距离相等.
    【点睛】
    本题考查了数轴、绝对值、一元一次方程的应用等知识点,熟练掌握数轴的性质是解题关键.

    相关试卷

    强化训练湖南省衡阳市中考数学三年高频模拟汇总卷(精选):

    这是一份强化训练湖南省衡阳市中考数学三年高频模拟汇总卷(精选),共27页。试卷主要包含了如图,点B等内容,欢迎下载使用。

    【中考特训】湖南省株洲市中考数学模拟专项测评 A卷(精选):

    这是一份【中考特训】湖南省株洲市中考数学模拟专项测评 A卷(精选),共26页。试卷主要包含了有理数 m,下列现象,如图个三角形.,如图,点B等内容,欢迎下载使用。

    中考数学湖南省株洲市中考数学三年高频真题汇总卷(含答案及详解):

    这是一份中考数学湖南省株洲市中考数学三年高频真题汇总卷(含答案及详解),共25页。试卷主要包含了和按如图所示的位置摆放,顶点B,已知,则的补角等于,如图个三角形.,下列图像中表示是的函数的有几个等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map