模拟汇总湖南省怀化市中考数学模拟考试 A卷(含答案及解析)
展开
这是一份模拟汇总湖南省怀化市中考数学模拟考试 A卷(含答案及解析),共24页。试卷主要包含了抛物线的顶点为,利用如图①所示的长为a,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
A.1B.2C.3D.0
2、已知,则的补角等于( )
A.B.C.D.
3、下列等式变形中,不正确的是( )
A.若,则B.若,则
C.若,则D.若,则
4、抛物线的顶点为( )
A.B.C.D.
5、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
6、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
A.B.
C.D.
7、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.19°B.20°C.24°D.25°
8、如图,①,②,③,④可以判定的条件有( ).
A.①②④B.①②③C.②③④D.①②③④
9、下列图像中表示是的函数的有几个( )
A.1个B.2个C.3个D.4个
10、下列计算中,正确的是( )
A.a2+a3=a5B.a•a=2aC.a•3a2=3a3D.2a3﹣a=2a2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知(n为正整数)满足:,则__________.
2、如图,射线,相交于点,则的内错角是__.
3、《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2 m记作,则下降3m记作______.
4、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.
5、如图,等边边长为4,点D、E、F分别是AB、BC、AC的中点,分别以D、E、F为圆心,DE长为半径画弧,围成一个曲边三角形,则曲边三角形的周长为______.
三、解答题(5小题,每小题10分,共计50分)
1、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;
(2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;
(3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?
2、已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为 E,ED的延长线与AC 的延长线交于点F,
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为4,∠F =30°,求DE的长.
3、如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE(AC﹣AB).
4、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:
(1)本次调查共抽取了多少名学生?
(2)①请补全条形统计图;
②求出扇形统计图中表示“及格”的扇形的圆心角度数.
(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?
5、如图,在平面直角坐标系中,在第二象限,且,,.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)作出关于轴对称的,并写出,的坐标;
(2)在轴上求作一点,使得最小,并求出最小值及点坐标.
-参考答案-
一、单选题
1、B
【分析】
证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
【详解】
解:∵与都是以A为直角顶点的等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴,故①正确;
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∵,
∴,
∴不成立,故②错误;
设BD交CE于M,
∵∠ACE+∠DBC=45°,∠ACB=45°,
∴∠BMC=90°,
∴,故③正确,
故选:B.
【点睛】
此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
2、C
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
3、D
【分析】
根据等式的性质即可求出答案.
【详解】
解:A.a=b的两边都加5,可得a+5=b+5,原变形正确,故此选项不符合题意;
B.a=b的两边都除以3,可得,原变形正确,故此选项不符合题意;
C.的两边都乘6,可得,原变形正确,故此选项不符合题意;
D.由|a|=|b|,可得a=b或a=−b,原变形错误,故此选项符合题意.
故选:D.
【点睛】
本题考查等式的性质,解题的关键是熟练运用等式的性质.等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.
4、B
【分析】
根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
【详解】
解:∵y=2(x-1)2+3,
∴抛物线的顶点坐标为(1,3),
故选:B.
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
5、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
6、A
【分析】
整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
∵大正方形边长为:,面积为:;
1个小正方形的面积加上4个矩形的面积和为:;
∴.
故选:A.
【点睛】
此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
7、B
【分析】
根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
【详解】
∵BD的垂直平分线交AB于点E,
∴
∴
∴
∵将沿AD折叠,点C恰好与点E重合,
∴,,
∵
∴
∵
∴
∴
故选:B.
【点睛】
本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
8、A
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
9、A
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
【详解】
解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
故第2个图符合题意,其它均不符合,
故选:A.
【点睛】
本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
10、C
【分析】
根据整式的加减及幂的运算法则即可依次判断.
【详解】
A. a2+a3不能计算,故错误;
B. a•a=a2,故错误;
C. a•3a2=3a3,正确;
D. 2a3﹣a=2a2不能计算,故错误;
故选C.
【点睛】
此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.
二、填空题
1、
【解析】
【分析】
由 ,再依次计算 从而可得答案.
【详解】
解: ,
故答案为:
【点睛】
本题考查的是已知字母的值,求解代数式的值,理解运算法则的含义并进行计算是解本题的关键.
2、##∠BAE
【解析】
【分析】
根据内错角的意义,结合具体的图形进行判断即可.
【详解】
解:由内错角的意义可得,与是内错角,
故答案为:.
【点睛】
本题考查内错角,掌握内错角的意义是正确解答的前提.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:如果水位上升记为“+”,那么水位下降应记为“﹣”,所以水位下降3米记为﹣3m.
故答案为:.
【点睛】
此题考查的知识点是正数和负数,关键是在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.
4、18°##18度
【解析】
【分析】
由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.
【详解】
证明:∵四边形ABCD是正方形,
∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,
在△DCE和△BCE中,
,
∴△DCE≌△BCE(SAS),
∴∠CED=∠CEB=∠BED=63°,
∵∠CED=∠CAD+∠ADE,
∴∠ADE=63°-45°=18°,
故答案为:18°.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.
5、
【解析】
【分析】
证明△DEF是等边三角形,求出圆心角的度数,利用弧长公式计算即可.
【详解】
解:连接EF、DF、DE,
∵等边边长为4,点D、E、F分别是AB、BC、AC的中点,
∴是等边三角形,边长为2,
∴∠EDF=60°,
弧EF的长度为,同理可求弧DF、DE的长度为,
则曲边三角形的周长为;
故答案为:.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了等边三角形的性质与判定和弧长计算,中位线的性质,解题关键是熟记弧长公式,正确求出圆心角和半径.
三、解答题
1、
(1)12%.补图见解析
(2)270
(3)12.5%
【分析】
(1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;
(2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;
(3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.
(1)
解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:
故答案为:12%.
(2)
解:调查的总人数为:120÷24%=500(人),
参加过滑雪的人数为:500×54%=270(人),
故答案为:270
(3)
解:体验过滑冰的人数为:500×48%=240(人),
(270-240)÷240=12.5%,
体验过滑雪的人比体验过滑冰的人多12.5%.
【点睛】
本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.
2、
(1)见解析
(2)
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)连接AD、OD,根据等腰三角形的性质和圆周角定理可证得∠EAD=∠ODA,根据平行线在判定与性质可证得OD⊥DE,然后根据切线的判定即可证得结论;
(2)根据含30°角的直角三角形的性质求得OF、DF,再根据平行线分线段成比例求解即可.
(1)
证明:连接AD、OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AC是⊙O的直径,
∴∠ADC=90°即AD⊥BC,又AB=AC,
∴∠BAD=∠OAD,
∴∠EAD=∠ODA,
∴OD∥AB,
∵DE⊥AB,
∴OD⊥DE,又OD是半径,
∴DE是⊙O的切线;
(2)
解:在Rt△ODF中,OD=4,∠F=30°,
∴OF=2OD=8,DF= OD= ,
∵OD∥AB,
∴即,
∴.
【点睛】
本题考查等腰三角形的性质、圆周角定理、平行线的判定与性质、切线的判定、含30°角的直角三角形性质、平行线分线段成比例,综合性强,难度适中,熟练掌握相关知识的联系与运用是解答的关键.
3、见解析
【分析】
根据全等三角形的判定与性质,可得∠ABF=∠AFB,AB=AF,BE=EF,根据三角形外角的性质,可得∠C+∠CBF=∠AFB=∠ABF,根据角的和差、等量代换,可得∠CBF=∠C,根据等腰三角形的判定,可得BF=CF,根据线段的和差、等式的性质,可得答案
【详解】
证明:如图:延长BE交AC于点F,
∵BF⊥AD,
∴∠AEB=∠AEF.
∵AD平分∠BAC
∴∠BAE=∠FAE
在△ABE和△AFE中,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴△ABE≌△AFE (ASA)
∴∠ABF=∠AFB, AB=AF, BE=EF
∵∠C+∠CBF=∠AFB=∠ABF
∴∠ABF+∠CBF=∠ABC=3∠C
∴∠C+2∠CBF=3∠C
∴∠CBF=∠C
∴BF=CF
∴BE=BF=CF
∵CF=AC-AF=AC-AB
∴BE= (AC-AB)
【点睛】
本题考查了等腰三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,等量代换,等式的性质,利用等量代换得出∠CBF=∠C是解题关键
4、
(1)100名
(2)①见解析;②
(3)1440名
【分析】
(1)用不及格的人数除以不及格的人数占比即可得到总人数;
(2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案;
(3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.
(1)
解:由题意得抽取的学生人数为:(名);
(2)
解:①由题意得:良好的人数为:(名),
∴优秀的人数为:(名),
∴补全统计图如下所示:
②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=;
(3)
解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有(名).
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.
5、
(1)见解析,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)见解析,,
【分析】
(1)由题意依据作轴对称图形的方法作出关于轴对称的,进而即可得出,的坐标;
(2)根据题意作关于轴的对称点,连接两点与轴的交点即为点,进而设直线的解析式为并结合勾股定理进行求解.
(1)
解:如图所示,即为所求.,
(2)
解:如图点即为所求.点关于轴对称点.
设直线的解析式为.
将,代入得
,,
∴直线
当时,.,,
最小.
【点睛】
本题考查画轴对称图形以及勾股定理,熟练掌握并利用轴对称的性质解决线段和的最小值是解题的关键.
相关试卷
这是一份模拟汇总湖南省新化县中考数学模拟考试 A卷(含答案解析),共27页。试卷主要包含了已知,则的补角等于,下列现象等内容,欢迎下载使用。
这是一份中考专题湖南省怀化市中考数学历年真题汇总 (A)卷(含答案解析),共29页。试卷主要包含了和按如图所示的位置摆放,顶点B,下列现象等内容,欢迎下载使用。
这是一份模拟真题湖南省怀化市中考数学五年真题汇总 卷(Ⅲ)(含答案详解),共31页。试卷主要包含了下列函数中,随的增大而减小的是,利用如图①所示的长为a等内容,欢迎下载使用。