强化训练湖南省益阳市中考数学五年模拟汇总 卷(Ⅲ)(含答案详解)
展开
这是一份强化训练湖南省益阳市中考数学五年模拟汇总 卷(Ⅲ)(含答案详解),共29页。试卷主要包含了下列各式中,不是代数式的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
A.B.C.D.
2、如图,①,②,③,④可以判定的条件有( ).
A.①②④B.①②③C.②③④D.①②③④
3、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°
A.B.C.D.
4、如图是一个运算程序,若x的值为,则运算结果为( )
A.B.C.2D.4
5、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
6、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.米B.10米C.米D.12米
7、下列各式中,不是代数式的是( )
A.5ab2B.2x+1=7C.0D.4a﹣b
8、有理数,在数轴上对应点如图所示,则下面式子中正确的是( )
A.B.C.D.
9、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A.B.C.D.
10、下列宣传图案中,既中心对称图形又是轴对称图形的是( )
A.B.
C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、两个相似多边形的周长比是3:4,其中较小的多边形的面积为,则较大的多边形的面积为______cm2.
2、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.
3、如图,在中,BC的垂直平分线MN交AB于点D,若,,P是直线MN上的任意一点,则的最小值是______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.
5、如图,在中,,,,以点A为圆心,的长为半径画弧,以点B为圆心,的长为半径画弧,两弧分别交于点D、F,则图中阴影部分的面积是_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,在平而直角坐标系中,抛物线(、、为常数,)的图像与轴交于点、两点,与轴交于点,且抛物线的对称轴为直线.
(1)求抛物线的解析式;
(2)在直线上方的抛物线上有一动点,过点作轴,垂足为点,交直线于点;是否存在点,使得取得最大值,若存在请求出它的最大值及点的坐标;若不存在,请说明理由;
(3)如图2,若点是抛物线上另一动点,且满足,请直接写出点的坐标.
2、已知一次函数y=-3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).
(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.求点E的坐标;
(2)△AOB与△FOD是否全等,请说明理由;
(3)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.
3、计算:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2.
4、如图,D、E、F分别是△ABC各边的中点,连接DE、DF、CD.
(1)若CD平分∠ACB,求证:四边形DECF为菱形;
(2)连接EF交CD于点O,在线段BE上取一点M,连接OM交DE于点N.已知CE=a,CF=b,EM=· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
c,求EN的值.
5、如图,在的正方形格纸中,是以格点为顶点的三角形,也称为格点三角形,请你在该正方形格纸中画出与成轴对称的所有的格点三角形(用阴影表示).
-参考答案-
一、单选题
1、A
【分析】
首先把点A坐标代入,求出k的值,再联立方程组求解即可
【详解】
解:把A代入,得:
∴k=4
∴
联立方程组
解得,
∴点B坐标为(-2,-2)
故选:A
【点睛】
本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
2、A
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
3、C
【分析】
根据平行线的性质可得,进而根据即可求解
【详解】
解:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选C
【点睛】
本题考查了平行线的性质,掌握平行线的性质是解题的关键.
4、A
【分析】
根据运算程序,根据绝对值的性质计算即可得答案.
【详解】
∵<3,
∴=,
故选:A.
【点睛】
本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
5、C
【分析】
函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
【详解】
解:函数与函数的图象如下图所示:
函数的图象是由函数的图象向下平移1个单位长度后得到的,
A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
故选:C.
【点睛】
本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
6、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
7、B
【分析】
根据代数式的定义即可判定.
【详解】
A. 5ab2是代数式;
B. 2x+1=7是方程,故错误;
C. 0是代数式;
D. 4a﹣b是代数式;
故选B.
【点睛】
此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.
8、C
【分析】
先根据数轴可得,再根据有理数的加减法与乘法法则逐项判断即可得.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:由数轴得:.
A、,此项错误;
B、由得:,所以,此项错误;
C、,此项正确;
D、,此项错误;
故选:C.
【点睛】
本题考查了数轴、绝对值、有理数的加减法与乘法,熟练掌握数轴的性质是解题关键.
9、B
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
10、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;
B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、64
【解析】
【分析】
根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.
【详解】
解:∵两个相似多边形的周长比是3:4,
∴两个相似多边形的相似比是3:4,
∴两个相似多边形的面积比是9:16,
∵较小多边形的面积为36cm2,
∴较大多边形的面积为64cm2,
故答案为:64.
【点睛】
本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
比的平方.
2、4m+12##12+4m
【解析】
【分析】
根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.
【详解】
解:由面积的和差,得
长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).
由长方形的宽为3,可得长方形的长是(2m+3),
长方形的周长是2[(2m+3)+3]=4m+12.
故答案为:4m+12.
【点睛】
本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.
3、8
【解析】
【分析】
如图,连接PB.利用线段的垂直平分线的性质,可知PC=PB,推出PA+PC=PA+PB≥AB,即可解决问题.
【详解】
解:如图,连接PB.
∵MN垂直平分线段BC,
∴PC=PB,
∴PA+PC=PA+PB,
∵PA+PB≥AB=BD+DA=5+3=8,
∴PA+PC≥8,
∴PA+PC的最小值为8.
故答案为:8.
【点睛】
本题考查轴对称﹣最短问题,线段的垂直平分线的性质等知识,解题的关键是学会利用两点之间线段最短解决最短问题,属于中考常考题型.
4、19.2
【解析】
【分析】
点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.
【详解】
解:如图所示:点P关于直线AB、AC的对称点分别为M、N,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由图可得:,
当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线, MN最长,
∴,,
∵等腰面积为48,,
∴,
,
∴,
故答案为:.
【点睛】
题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.
5、
【解析】
【分析】
根据直角三角形30度角的性质及勾股定理求出AC、BC,∠A=60°,利用扇形面积公式求出阴影面积.
【详解】
解:在中,,,,
∴AC=1,,∠A=60°,
∴图中阴影部分的面积=
=
=,
故答案为:.
【点睛】
此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.
三、解答题
1、
(1)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2);
(3)
【分析】
(1)待定系数法求解析式即可;
(2)过点作于点,求得,直线的解析式为,设,点在直线上,则,进而求得,根据二次函数的性质求得最值以及的值,进而求得的坐标;
(3)取点,连接,则,进而证明,根据的解析式求得的解析式,进而联立抛物线解析式即可求得点的坐标.
(1)
解:抛物线的对称轴为直线,与轴交于点、两点,与轴交于点,
设抛物线的解析式为,将点代入得
解得
抛物线的解析式为
即
(2)
解:如图,过点作于点,
设直线的解析式为,将点,
代入得:
解得
直线的解析式为
,
是等腰直角三角形
轴,
轴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在中,
在直线上方的抛物线上有一动点,设
点在直线上,则
,
即当时,的最大值为:
此时
即
(3)
如图,取点,连接,则,
又
设直线的解析式为
则
解得
直线的解析式为
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
设直线的解析式为,过点
解得
直线的解析式为
是抛物线上的一点,则为直线与抛物线的交点,则
解得,
【点睛】
本题考查了二次函数综合,一次函数的平移问题,二次函数最值问题,掌握二次函数的图象的性质是解题的关键.
2、
(1)E(,)
(2)△AOB≌△FOD,理由见详解;
(3)P(0,-3)或(4,1)或(,).
【分析】
(1)连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,首先求出点A,点B,点C,点D的坐标,然后根据点E到两坐标轴的距离相等,得到OE平分∠BOC,进而求出点E的坐标即可;
(2)首先求出直线DE的解析式,得到点F的坐标,即可证明△AOB≌△FOD;
(3)首先求出直线GC的解析式,求出AB的长,设P(m,m-3),分类讨论①当AB=AP时,②当AB=BP时,③当AP=BP时,分别求出m的值即可解答.
(1)
解: 连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,
当y=0时,-3x+3=0,
解得x=1,
∴A(1,0),
当x=0时,y=3,
∴OB=3,B(0,3),
∵点D与点C关于y轴对称,C(3,0),OC=3,
∴D(-3,0),
∵点E到两坐标轴的距离相等,
∴EG=EH,
∵EH⊥OC,EG⊥OC,
∴OE平分∠BOC,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵OB=OC=3,
∴CE=BE,
∴E为BC的中点,
∴E(,);
(2)
解: △AOB≌△FOD,
设直线DE表达式为y=kx+b,
则,
解得:,
∴y=x+1,
∵F是直线DE与y轴的交点,
∴F(0,1),
∴OF=OA=1,
∵OB=OD=3,∠AOB=∠FOD=90°,
∴△AOB≌△FOD;
(3)
解:∵点G与点B关于x轴对称,B(0,3),
∴点G(0,-3),
∵C(3,0),
设直线GC的解析式为:y=ax+c,
,
解得:,
∴y=x-3,
AB== ,
设P(m,m-3),
①当AB=AP时,
=
整理得:m2-4m=0,
解得:m1=0,m2=4,
∴P(0,-3)或(4,1),
②当AB=BP时,=
m2-6m+13=0,
△<0
故不存在,
③当AP=BP时,
=,
解得:m=,
∴P(, ),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
综上所述P(0,-3)或(4,1)或(,),
【点睛】
此题主要考查待定系数法求一次函数,一次函数与坐标轴的交点,全等三角形的判定,勾股定理.
3、
【分析】
根据整式的乘法公式及运算法则化简,合并即可求解.
【详解】
(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2
=a2-4b2-a2+4ab-4b2+8b2
=4ab.
【点睛】
此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及运算公式.
4、
(1)见解析
(2)EN=
【分析】
(1)根据三角形的中位线定理先证明四边形为平行四边形,再根据角平分线平行证明一组邻边相等即可;
(2)由(1)得,所以要求的长,想到构造一个“ “字型相似图形,进而延长交于点,先证明,得到,再证明,然后根据相似三角形对应边成比例,即可解答.
(1)
证明:、、分别是各边的中点,
,是的中位线,
,,
四边形为平行四边形,
平分,
,
,
,
,
,
四边形为菱形;
(2)
解:延长交于点,
,
,,,
四边形为平行四边形,
,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
,
,
.
【点睛】
本题考查了菱形的判定与性质,三角形的中位线定理,相似三角形的判定与性质,解题的关键是根据题目的已知并结合图形.
5、见详解
【分析】
先找对称轴,再得到个点的对应点,即可求解.
【详解】
解:根据题意画出图形,如下图所示:
【点睛】
本题主要考查了画轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
相关试卷
这是一份模拟汇总湖南省益阳市中考数学真题汇总 卷(Ⅱ)(精选),共30页。试卷主要包含了下列各式中,不是代数式的是,如图,有三块菜地△ACD,下列方程变形不正确的是等内容,欢迎下载使用。
这是一份中考强化训练湖南省益阳市中考数学模拟专项测试 B卷(含答案详解),共32页。试卷主要包含了如图,点B,下列函数中,随的增大而减小的是等内容,欢迎下载使用。
这是一份【中考专题】湖南省益阳市中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解),共24页。试卷主要包含了单项式的次数是,下列图标中,轴对称图形的是等内容,欢迎下载使用。