![模拟汇总贵州省安顺市中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析)第1页](http://img-preview.51jiaoxi.com/2/3/15588351/0-1712505203039/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![模拟汇总贵州省安顺市中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析)第2页](http://img-preview.51jiaoxi.com/2/3/15588351/0-1712505203078/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![模拟汇总贵州省安顺市中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析)第3页](http://img-preview.51jiaoxi.com/2/3/15588351/0-1712505203089/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
模拟汇总贵州省安顺市中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析)
展开
这是一份模拟汇总贵州省安顺市中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析),共30页。试卷主要包含了如图,E等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点B、G、C在直线FE上,点D在线段AC上,下列是△ADB的外角的是( )
A.∠FBAB.∠DBCC.∠CDBD.∠BDG
2、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
A.2个B.3个C.4个D.5个
3、如图,在中,,,,则的度数为( )
A.87°B.88°C.89°D.90°
4、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个B.3 个C.4 个D.5 个.
5、为了完成下列任务,你认为最适合采用普查的是( )
A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜
C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果
6、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A.B.C.D.
7、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
①;②;③;④.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.①②③B.①②④C.①③④D.②③④
8、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
9、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).
A.28B.54C.65D.75
10、若和是同类项,且它们的和为0,则mn的值是( )
A.-4B.-2C.2D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)
2、小明在写作业时不慎将一滴墨水滴在数轴上,根据图所示的数轴,请你计算墨迹盖住的所有整数的和为______.
3、下面给出了用三角尺画一个圆的切线的步骤示意图,但顺序需要进行调整,正确的画图步骤是________.
4、如图,小明用一张等腰直角三角形纸片做折纸实验,其中∠C=90°,AC=BC=10,AB=10,点C关于折痕AD的对应点E恰好落在AB边上,小明在折痕AD上任取一点P,则△PEB周长的最小值是___________.
5、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
y1_____y2(填“>”、“=”或“<”),
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).
(1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
(2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
(3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.
2、如图,在中,,,,动点从点开始沿边向点以的速度移动,动点从点开始沿边向点以的速度移动.若,两点同时出发,当点到达点时,,两点同时停止移动.设点,移动时间为.
(1)若的面积为,写出关于的函数关系式,并求出面积的最大值;
(2)若,求的值.
3、数学课上,王老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.
(1)请用两种不同的方法求图2大正方形的面积:
方法1: ;
方法2: ;
(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 ;
(3)根据(2)题中的等量关系,解决如下问题:
①已知:a+b=5,(a﹣b)2=13,求ab的值;
②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.
4、已知关于的二次函数.
(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;
(2)若,两点在该二次函数的图象上,直接写出与的大小关系;
(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值.
5、如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE(AC﹣AB).
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
-参考答案-
一、单选题
1、C
【分析】
根据三角形的外角的概念解答即可.
【详解】
解:A.∠FBA是△ABC的外角,故不符合题意;
B. ∠DBC不是任何三角形的外角,故不符合题意;
C.∠CDB是∠ADB的外角,符合题意;
D. ∠BDG不是任何三角形的外角,故不符合题意;
故选:C.
【点睛】
本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
2、C
【分析】
设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
【详解】
解:设原两位数的个位为 十位为 则这个两位数为
交换其个位数与十位数的位置,所得新两位数为 则
整理得:
为正整数,且
或或或
所以这个两位数为:
故选C
【点睛】
本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
3、A
【分析】
延长DB至E,使BE=AB,连接AE,则DE=CD,从而可求得∠C=∠E=31°,再根据三角形内角和可求度数.
【详解】
解:延长DB至E,使BE=AB,连接AE,
∴∠BAE=∠E,
∵,
∴∠BAE=∠E=31°,
∵AB+BD=CD
∴BE+BD=CD
即DE=CD,
∵AD⊥BC,
∴AD垂直平分CE,
∴AC=AE,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠C=∠E=31°,
∴;
故选:A.
【点睛】
此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键.
4、C
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
5、D
【分析】
普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
6、B
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
7、B
【分析】
根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
【详解】
解:∵四边形ABCD是正方形,
∴,,
在与中,
,
∴,
∴,①正确;
∵,
,
∴,
∴,
∴,②正确;
∵GF与BG的数量关系不清楚,
∴无法得AG与GE的数量关系,③错误;
∵,
∴,
∴,
即,④正确;
综上可得:①②④正确,
故选:B.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
8、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
9、B
【分析】
一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可
【详解】
设中间的数是x,则上面的数是x-7,下面的数是x+7,
则这三个数的和是(x-7)+x+(x+7)=3x,
∴3x=28,
解得:不是整数,
故选项A不是;
∴3x=54,
解得: ,
中间的数是18,则上面的数是11,下面的数是28,
故选项B是;
∴3x=65,
解得: 不是整数,
故选项C不是;
∴3x=75,
解得:,
中间的数是25,则上面的数是18,下面的数是32,
日历中没有32,
故选项D不是;
所以这三个数的和可能为54,
故选B.
【点睛】
本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.
10、B
【分析】
根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
【详解】
解:∵和是同类项,且它们的和为0,
∴2+m=3,n-1=-3,
解得m=1,n=-2,
∴mn=-2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:B.
【点睛】
此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
二、填空题
1、∠ABT=∠ATB=45°(答案不唯一)
【解析】
【分析】
根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.
【详解】
解:添加条件:∠ABT=∠ATB=45°,
∵∠ABT=∠ATB=45°,
∴∠BAT=90°,
又∵AB是圆O的直径,
∴AT是圆O的切线,
故答案为:∠ABT=∠ATB=45°(答案不唯一).
【点睛】
本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.
2、-10
【解析】
【详解】
解:结合数轴,得墨迹盖住的整数共有−6,−5,−4,−3,−2,1,2,3,4,
以上这些整数的和为:-10
故答案为:-10
【点睛】
本题主要考查数轴,解题的关键是熟练掌握数轴的定义.
3、②③④①
【解析】
【分析】
先根据直径所对的圆周角是直角确定圆的一条直径,然后根据圆的一条切线与切点所在的直径垂直,进行求解即可.
【详解】
解:第一步:先根据直径所对的圆周角是直角,确定圆的一条直径与圆的交点,即图②,
第二步:画出圆的一条直径,即画图③;
第三边:根据切线的判定可知,圆的一条切线与切点所在的直径垂直,确定切点的位置从而画出切线,即先图④再图①,
故答案为:②③④①.
【点睛】
本题主要考查了直径所对的圆周角是直角,切线的判定,熟知相关知识是解题的关键.
4、
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
连接CE,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.
【详解】
解:连接CE,
∵沿AD折叠C和E重合,
∴∠ACD=∠AED=90°,AC=AE=10,∠CAD=∠EAD,
∴BE=10-10,AD垂直平分CE,即C和E关于AD对称,CD=DE,
∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,
∴△PEB的周长的最小值是BC+BE=10+10-10=10.
故答案为:10.
【点睛】
本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,关键是求出P点的位置.
5、<
【解析】
【分析】
找到二次函数对称轴,根据二次函数的增减性即可得出结论.
【详解】
解:∵y=﹣2(x﹣1)2+3,
∴抛物线y=﹣2(x﹣1)2+3的开口向下,对称轴为x=1,
∴在x<1时,y随x的增大而增大,
∵x1<x2<0,
∴y1<y2.
故答案为:<.
【点睛】
本题考查二次函数的增减性,掌握其增减规律,找到对称轴是解本题关键.
三、解答题
1、
(1)点E,点F;
(2)()或();
(3)b的取值范围1<b<2或2<b<3.
【分析】
(1)根据以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,△ABE为直角三角形,且AE大于AB;以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,BF大于AB即可;
(2)根据点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,得出△AOB为等腰直角三角形,可得∠ABO=∠BAO=45°,以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,利用待定系数法求出AS解析式为,联立方程组,以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,∠OBR=90°-∠ABO=45°,可得△OBR为等腰直角三角形,OR=OB=1,点R(0,-1),利用平移· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
的性质可求BR解析式为,联立方程组,解方程组即可;
(3)过点A与AB垂直的直线交直线y=2x+2于U,把△AOB绕点A顺时针旋转90°,得△AO′U,AO′=AO=1,O′U=OB=b,根据点U(-1,b-1)在直线上,得出方程,求出b的值,当过点A的直线与直线平行时没有 “关联点”,OB=OW=b=2,得出在1<b<2时,直线上存在两个AB的“关联点”,当b>2时,根据旋转性质将△AOB绕点A逆时针旋转90°得到△AO′U,得出AO′=AO=1,O′U=OB=b,根据点U(1,1+b)在直线上,列方程,得出即可.
(1)
解:点D与AB纵坐标相同,在直线AB上,不能构成直角三角形,
以点B为直角顶点,点B与点E横坐标相同,点E在过点B与AB垂直的直线上,
∴△ABE为直角三角形,且AE大于AB;
以点A为直角顶点,点A与点F横坐标相同,△AFB为直角三角形,AF=4>AB=2,
∴点E与点F是AB关联点,
点G不在A、B两点垂直的直线上,故不能构成直角三角形,
故答案为点E,点F;
(2)
解:∵点A(0,1)点B(-1,0),OA=OB,∠AOB=90°,
∴△AOB为等腰直角三角形,AB=
∴∠ABO=∠BAO=45°,
以点A为直角顶点,过点A,与AB垂直的直线交x轴于S,
∴∠OAS=90°-∠BAO=45°,
∴△AOS为等腰直角三角形,
∴OS=OA=1,点S(1,0),
设AS解析式为代入坐标得:
,
解得,
AS解析式为,
∴,
解得,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
点P(),
AP=,AP>AB
以点B为直角顶点,过点B,与AB垂直的直线交y轴于R,
∴∠OBR=90°-∠ABO=45°,
∴△OBR为等腰直角三角形,
∴OR=OB=1,点R(0,-1),
过点R与AS平行的直线为AS直线向下平移2个单位,
则BR解析式为,
∴,
解得,
点P1(),
AP1=>,
∴点P为线段AB的关联点,点P的坐标为()或();
(3)
解:过点A与AB垂直的直线交直线y=2x+2于U,
把△AOB绕点A顺时针旋转90°,得△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(-1,b-1)在直线上,
∴
∴,
∴当b>1时存在两个“关联点”,
当b<1时,UA<AB,不满足定义,没有两个“关联点”
当过点A的直线与直线平行时没有 “关联点”
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
与x轴交点X(-1,0),与y轴交点W(0,2)
∵OA=OX=1,∠XOW=∠AOB=90°,AB⊥XW,
∴△OXW顺时针旋转90°,得到△OAB,
∴OB=OW=2,
∴在1<b<2时,直线上存在两个AB的“关联点”,
当b>2时,将△AOB绕点A逆时针旋转90°得到△AO′U,
∴AO′=AO=1,O′U=OB=b,
点U(1,1+b)在直线上,
∴
∴解得
∴当2<b<3时, 直线上存在两个AB的“关联点”,
当b>3时,UA<AB,不满足定义,没有两个“关联点”
综合得,b的取值范围1<b<2或2<b<3.
【点睛】
本题考查新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,掌握新定义线段的意义,直角三角形性质,仔细阅读新定义,由两个条件,(1)组成直角三角形,(2)AC>AB,等腰直角三角形,勾股定理两点距离公式,待定系数法求直线解析式,图形旋转,两函数交点联立方程组,是解题关键.
2、
(1)面积的最大值为
(2)
【分析】
(1)动点从点A开始沿边向点以的速度移动,动点从点开始沿边向点C以的速度移动,所以,.从而,求二次函数最大值即可;
(2)先证,得,从而,即可得解.
(1)
解:由题意可知,,.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴;
∵,
∴当时,.
∴面积的最大值为;
(2)
解:∵,,
∴.
∴.
即,
解得.
故t的值为.
【点睛】
本题结合三角形面积公式考查了求二次函数的解析式及最值问题,结合相似三角形的判定和性质考查了路程问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是求三角形面积或四边形面积的最值问题,转化为函数求最值问题,直接利用面积公式或求和、求差表示面积的方法求出函数的解析式,再根据函数图象确定最值,要注意时间的取值范围.
3、
(1);
(2)
(3)①;②-2
【分析】
(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;
(2)由(1)直接可得关系式;
(3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.
(1)
方法一:∵大正方形的边长为(a+b),
∴S=(a+b)2;
方法二:大正方形是由2个长方形,2个小正方形拼成,
∴S=b2+ab+ab+a2=a2+b2+2ab;
故答案为:(a+b)2,a2+b2+2ab;
(2)
由(1)可得(a+b)2=a2+b2+2ab;
故答案为:(a+b)2=a2+b2+2ab;
(3)
①∵(a-b)2=a2+b2-2ab=13①,
(a+b)2=a2+b2+2ab=25②,
由①-②得,-4ab=-12,
解得:ab=3;
②设2021-a=x,a-2020=y,
∴x+y=1,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵(2021-a)2+(a-2020)2=5,
∴x2+y2=5,
∵(x+y)2=x2+2xy+y2=1,
∴2xy=1-(x2+y2)=1-5=-4,
解得:xy=-2,
∴(2021-a)(a-2020)=-2.
【点睛】
本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.
4、
(1)见解析
(2)
(3)的值为1或-5
【分析】
(1)计算判别式的值,得到,即可判定;
(2)计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;
(3)先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可.
(1)
证明:令,则
∴
∴不论为何实数,方程有两个不相等的实数根
∴无论为何实数,该二次函数的图象与轴总有两个公共点
(2)
解:二次函数的对称轴为:直线
∵,抛物线开口向上
∴抛物线上的点离对称轴越远对应的函数值越大
∵
∴M点到对称轴的距离为:1
N点到对称轴的距离为:2
∴
(3)
解:∵抛物线
∴沿轴翻折后的函数解析式为
∴该抛物线的对称轴为直线
①若,即,则当时,有最小值
∴
解得,
∵
∴
②若,即,则当时,有最小值-1
不合题意,舍去
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
③若,,则当时,有最小值
∴
解得,
∵
∴
综上,的值为1或-5
【点睛】
本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键.
5、见解析
【分析】
根据全等三角形的判定与性质,可得∠ABF=∠AFB,AB=AF,BE=EF,根据三角形外角的性质,可得∠C+∠CBF=∠AFB=∠ABF,根据角的和差、等量代换,可得∠CBF=∠C,根据等腰三角形的判定,可得BF=CF,根据线段的和差、等式的性质,可得答案
【详解】
证明:如图:延长BE交AC于点F,
∵BF⊥AD,
∴∠AEB=∠AEF.
∵AD平分∠BAC
∴∠BAE=∠FAE
在△ABE和△AFE中,
∴△ABE≌△AFE (ASA)
∴∠ABF=∠AFB, AB=AF, BE=EF
∵∠C+∠CBF=∠AFB=∠ABF
∴∠ABF+∠CBF=∠ABC=3∠C
∴∠C+2∠CBF=3∠C
∴∠CBF=∠C
∴BF=CF
∴BE=BF=CF
∵CF=AC-AF=AC-AB
∴BE= (AC-AB)
【点睛】
本题考查了等腰三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,等量代换,等式的性质,利用等量代换得出∠CBF=∠C是解题关键
相关试卷
这是一份模拟汇总贵州省兴仁市中考数学三年高频真题汇总 卷(Ⅲ)(含答案解析),共23页。试卷主要包含了下列计算中,正确的是,下列语句中,不正确的是等内容,欢迎下载使用。
这是一份模拟汇总贵州省中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解),共27页。试卷主要包含了如图,某汽车离开某城市的距离y,下列图形是全等图形的是等内容,欢迎下载使用。
这是一份【中考特训】贵州省中考数学三年高频真题汇总 卷(Ⅱ)(含答案解析),共31页。试卷主要包含了下列等式变形中,不正确的是等内容,欢迎下载使用。